LECTURE 3 EXERCISES

(1) Show that homomorphisms of $\mathbb{C}*$ to itself, as algebraic groups, are isomorphic to the integers:

Hom_{alg. gp}(
$$\mathbb{C}^*, \mathbb{C}^*$$
) = \mathbb{Z}

(Hint: such homomorphisms are homomorphisms of $\mathbb{C}[x, x^{-1}]$ that respect the comultiplication).

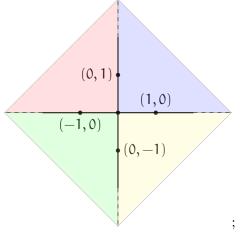
(2) Show that

 $\operatorname{Hom}_{Scheme}(\operatorname{Spec} A, \operatorname{Spec} \mathbb{C}[S_{\sigma}]) = \operatorname{Hom}_{Mon}(S_{\sigma}, A)$ where A is considered to be a monoid under multiplication.

(3) Find the fan of the toric variety

$$\operatorname{Spec} \mathbb{C}[\mathrm{x},\mathrm{y},z]/\mathrm{x}z = \mathrm{y}^3$$

(4) Can the following be the fan of \mathbb{P}^2 ? (bonus if you can come up with a 10 second explanation)



(5) Let $N = \mathbb{Z}^3$, $v_1 = (1, 0, 0)$, $v_2 = (0, 1, 0)$, $v_3 = (0, 0, 1)$, u = (-1, -1, -1). Let Δ be the fan consisting of the four maximal cones $Cone(v_1, v_2, v_3)$, $Cone(v_1, v_2, u)$, $Cone(v_1, v_3, u)$, $Cone(v_2, v_3, u)$. Compute the fan of the stratum corresponding to the ray $\mathbb{R}_{\geq 0}v_1$.