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1 Introduction
In this talk we will prove the so-called “orbit-cone” correspondence. As the name
suggests, this will give a correspondence between the cones contained in the fan
∆ and the orbits of the action of T on X(∆). As a corollary, we have that the
number of orbits is finite, which one would expect in any case since the torus
acts transitively on itself and hence the dense open torus T ⊆ X is contained in
a single orbit (in fact we will show that it is an orbit in itself). To give some
motivation for what is to come, we start with some examples:
Example 1.1. In this example, we consider the toric variety C2, corresponding
to the cone ∆ spanned by e1 and e2 in Z2. This variety is visualized in Figure 1.
Since (C∗)2 acts by componentwise multiplication, it is easy to see that the orbits
are exactly the sets highlighted in Figure 1. Observe that the closure of any orbit
is a union of orbits and the relationship between the orbits with respect to the

Figure 1: Visualization of C2, with different orbits highlighted by using different
colors
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partial order X ⊆ Y , can be visualized as follows:

(C∗)2

C∗ × 0 0 × C∗

{(0, 0)}.

So far so good, but no interesting patterns are immediately visible from a single
example. Let’s try the same thing with a singular surface example:
Example 1.2. Let X := Z(xy −z2) be the singular cone. This is a toric variety
corresponding to the fan spanned by e1 and 2e2 + e1 in Z2. Indeed, the dense
open torus in X is given by D(z). Namely, z ̸= 0 implies x, y ≠ 0, so on D(z)
we may invert x and xy − z2 = 0 becomes equivalent to y = z2

x . Hence

D(z) ∼= Z[x, z]x,z
∼= (C∗)2.

The torus D(z) acts on itself by componentwise multiplication (α, β) · (x, z) =
(αx, βz) and extending this action to x means that we must send y to β2

a y. Hence,
we obtain the action:

(α, β) · (x, y, z) =
(

αx,
β2

α
y, βz

)
.

From this description, we can immediately determine the orbits, which are
visualized below, in the same way as for Example 1.1.

X ∩ (C∗)2

C∗ × 0 × 0 0 × C∗ × 0

{(0, 0, 0)}.

This is already more interesting: The structure of the orbits in Example 1.1 is
identical to the structure in Example 1.2 and again, we see that the closure of
the orbits is a union of orbits. In light of what we are hoping to show however,
this does make sense, since the combinatorial structure of ∆ in the two cases is
also identical. Let us try a higher dimensional example:
Example 1.3. Consider the toric variety Cn with the action of (C∗)n given by
componentwise multiplication. Clearly, the orbits are in 1-to-1 correspondence
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with the subsets of {1, . . . , n} where {i1, . . . , ij} corresponds to the set of points
z ∈ Cn such that zij = 0 for all j. For example, in C3, we have the structure:

{} = (C∗)3

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3} = {0}.

Note that C3 corresponds to the fan ∆ generated by e1, e2 and e3 in Z3, visualized
as:

Observe that the cones contained in ∆ have a structure with respect to inclusion
which can be visualized as:

Ok, nice! Let’s see what happens if we work out an example with multiple cones:
Example 1.4. Consider the fan corresponding to P2, pictured in Figure 2. In
homogeneous coordinates, the torus action on P2 is given by

(a, b) · [z0 : z1 : z2] = [az0, bz1, b−1z2].

Thus we clearly see that the orbits are given by D(z0z1z2) as well as Z(z0), Z(z1),
Z(z2) and their pair-wise intersections. Their structure is as follows:
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e2

e1

−e1 − e2

Figure 2: The fan corresponding to P2.

D(z0z1z2)

Z(z0) Z(z1) Z(z2)

Z(z0) ∩ Z(z1) Z(z0) ∩ Z(z2) Z(z1) ∩ Z(z2).

As in the preceding example, we can again look at the structure of the cones
contained in ∆:

The above structure looks astoundingly similar to the structure of the orbits.
In fact, this is not a coincidence but instead a first glimpse at the result we
will now attempt to prove. The first question which naturally arises is whether
bigger cones should correspond to bigger orbits or vice versa. To give a heuristic
for this, observe that every toric variety has a unique dense orbit (the dense
open torus) and that every fan has a unique cone of dimension 0 (the point
at the origin). This suggests that these two objects should correspond to each
other and hence smaller cones correspond to larger orbits. Indeed, the following
theorem holds:
Theorem 1.1. There exists an inclusion-reversing bijection between the cones τ

in a fan ∆ and orbits Oτ in X(∆). Moreover, we have the following properties:

1. V (τ) := Oτ is again a toric variety with torus action restricted from X(∆).
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(a) ∆ (b) The image of ∆ in N(τ)

Figure 3: The result of taking the image of ∆ in N(τ),where τ is the cone
spanned by e1.

(a) ∆
(b) The image of in N(τ) of the
cones containing τ .

Figure 4: The result of taking the image of the cones containing τ in N(τ),where
τ is the cone marked in red.

2. dim(τ) = codim(V (τ)).
3. V (τ) =

∐
σ≻τ Oσ.

4. Uσ =
∐

τ≺σ Oτ for all cones σ ∈ ∆.

The proof and explanation of this theorem will keep us busy for most of the
remaining part of the lecture. We begin by constructing the bijection. For this,
let ∆ be a fan and τ ∈ ∆ a cone. The idea is that τ corresponds to a toric
variety V (τ) ⊆ X(∆) , whose torus action is compatible with the torus action
on X(∆). Namely, assuming that we have constructed such a V (τ), then the
dense open torus Oτ ⊆ V (τ) will be the orbit to which τ corresponds. We now
construct V (τ):

First observe that if τ is of dimension k, then V (τ) should be of dimension
n − k (the bijection is supposed to be inclusion reversing). Thus, intuitively,
we expect that we must somehow “quotient by τ”. To make this rigorous, let
us first define the lattice Nτ := N ∩ ⟨τ⟩, i.e. the part of the lattice N lying in
the subspace spanned by τ . Then N(τ) := N/Nτ is again a lattice with dual
lattice M(τ) := M ∩ τ⊥, where τ⊥ := {σ ∈ M : σ(τ) = 0}. In general, taking
the image of ∆ in N(τ) will not be so well behaved. For example, in Figure 3,
the two cones in ∆ are mapped to the same cone in N(τ).

However, restricting to the cones containing τ , one can see that in fact we do
obtain a 1-to-1 correspondence between the set of these cones and their images
in N(τ) (see for example Figure 4).

We call the resulting fan Star(τ). The claim is then that we can choose V (τ) :=
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X(Star(τ)). To be able to do this, we must describe a closed embedding
V (τ) ↪−→ X(∆). We construct this embedding on the level of cones σ ∈ ∆ and
their images σ ∈ Star(τ). Obvious compatibility conditions then allow us to
glue these together to obtain the required embedding.

The algebro-geometric machinery now tells us that a closed embedding Uσ ↪−→ Uσ

is equivalent to a surjective morphism:

C[Sσ] ↠ C[Sσ].

This surjection will be induced by a surjection

M ∩ σ∨ = Sσ ↠ Sσ = M(τ) ∩ σ∨ = M ∩ τ⊥ ∩ σ∨.

Indeed, the right-hand side is precisely the set of u ∈ M ∩ σ∨ such that u|τ = 0.
Hence, we obtain a canonical surjection by sending χu to χu if u|τ = 0 and to
0 if not. As a remark that we will be using later on, observe that on the dual
monoids, this morphism corresponds to the “extension by 0” of a morphism
Sσ → C to a morphism Sσ → C. There is an obvious commutative diagram:

C[Sσ] C[Sσ]

C[Sσ] ⊗ C[M ] C[Sσ] ⊗ C[M(τ)]

which translates to the fact that the inclusion Uσ → Uσ is equivariant with
respect to the torus action. In more down to earth terms, this means that the
torus action on Uσ is the restriction of the torus action on Uσ. Gluing these
inclusions, we get exactly the embedding V (τ) → X(∆) as claimed. We denote
the image of TN(τ) in X(∆) by Oτ . First, observe that since the torus action on
Oτ is transitive, this set must be contained in some orbit of X(∆). In fact, this
set is the entire orbit as the following proposition shows:
Proposition 1.1. Let σ be a cone in some lattice N . Then:

a. Uσ =
∐

τ≺σ Oτ

b. V (τ) =
∐

γ≻τ Oγ

c. Oτ = V (τ) \
∐

γ⪶τ Oγ = V (τ) \
∐

γ⪶τ Oγ = V (τ) \
⋃

γ⪶τ V (γ)
Proof. For (a), observe that points in Uσ correspond to C-algebra homomor-
phisms C[Sσ] → C (think “evaluating f ∈ C[Sσ] at a point”). This in turn
corresponds to a morphism of monoids x : Sσ → C. Observe that x corresponds
to a point in TN if and only if x(u) ∈ C∗ for all u ∈ Sσ, since in this case, it
must come from a morphism Sgp

σ → C. But now, since x(u + u′) = x(u) · x(u′),
this quantity is in C∗ if and only if x(u) and x(u′) are both in C∗. This means
that x−1(C∗) must be the dual of some face τ of σ (x−1(C∗) = σ∨ ∩ τ⊥ ∩ M)
(any point in the interior of a cone can be written as a convex combination of
vectors in the boundary). From the definition of C[Sσ] → C[Sσ] above, one then
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τ 2

e1 + 2e2

τ1
e1

τ3

τ0

Figure 5: The cone corresponding to the singular cone discussed in Example 1.5.

sees that x can be written as the extension by 0 of some point x in C[Sσ] and
indeed x is contained in the image Oτ of the dense open torus TN(τ). This shows
(a). (b) follows from the description of Star(τ) as well as (a) and (c) follows
from (b).

And with this, we have finally finished the proof of Theorem 1.1! We will end
the talk in a minute, but let us just take a moment to see what we have achieved
by applying it to a specific example (well-known by now):
Example 1.5. We look again at the singular cone X = Z(xy − z2), discussed
in Example 1.2. This toric variety comes from the cone depicted in Figure 5, by
the correspondences x = χe∗

2 , y = χe∗
1+2e∗

2 and z = χe∗
1 .

Starting with the easy part, we clearly have that V (τ0) = X and thus Oτ = TN =
D(z) ∼= k[x, x−1, z, z−1]. Next, looking at V (τ1), we have N(τ1) = ⟨e2⟩ ∼= Z with
the image of τ3 in N(τ1) equal to the cone spanned by 2e2. Thus V (τ1) ∼= A1 and
using the description of the surjection C[x, y, z] → C[t] described above, we have
that it is defined by (x, y, z) 7→ (t, 0, 0). Hence the image of V (τ1) in X is exactly
C × 0 × 0 and Oτ1 is C∗ × 0 × 0, which is precisely one of the orbits determined
in example 1.2. Proceeding similarly, we find that V (τ2) ∼= A1, corresponding to
0 × C × 0 ⊆ X and V (τ3) ∼= {∗}, corresponding to (0, 0, 0) ∈ X.
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