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1 Introduction
In this talk we will discuss the so-called Riemann-Roch theorem for (potentially
singular) toric varieties. To give some context, we will first discuss the classical
Riemann-Roch theorem for line bundles over curves.

This theorem in its most basic form gives an expression for the dimension of the
C-vector space of meromorphic functions on a compact Riemann surface whose
singularities are bounded by some fixed divisor. To see why the computation
of this dimension is important, it already suffices to consider the trivial case
D = 0 on the Riemann sphere S2. Namely, the set of meromorphic functions
which have poles no worse than D are then exactly the holomorphic functions
S2 → C. It is an important theorem from elementary complex analysis that any
such function is constant. Let us look at some other examples on the Riemann
sphere.
Example 1.1. Set D = {0} the divisor supported at the origin of C ⊆ S2. Then
a meromorphic function f which has poles no worse than D is by definition
a meromorphic function which has at most a single pole at the origin. Again,
we obviously have the constant functions. But now, we also have z−1, so the
dimension of the space of such functions is ℓ(D) = 2. What about if we add
a second point D = {0, ∞}? Then we have the constant functions, z and
z−1 and hence ℓ(D) = 3. You might guess now that for a general divisor D

ℓ(D) = deg(D) + 1 (at least when deg(D) ≥ 0) and indeed this is the most
elementary formulation of the Riemann-Roch theorem.

The required language quickly becomes more complicated though if we try to
generalize this statement. For example, if C is a proper non-singular algebraic
curve, the Riemann-Roch theorem states that

ℓ(D) − ℓ(K − D) = deg(D) − g + 1.

Here g is the genus of the curve, ituitively counting the number of “holes” in
the corresponding Riemann surface. Moreover, K is the canonical divisor on
C, defined to be the divisor corresponding to the line bundle ΩC , the sheaf of
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differentials. In the case of P1, K is a divisor of degree 2 and you can check that
this makes everything work out the way we discussed above.

A fundamental insight leading to the generalization to the higher-dimensional
case was that the term on the left-hand side can be interpreted as the Euler
characteristic of the line bundle, i.e. the alternating sum over the dimensions
of its cohomology groups (this can be seen by applying Serre duality to show
that ℓ(K − D) is in fact equal to the dimension of H1(O(D))). This lead to the
so-called Hirzebruch-Riemann-Roch formula:

χ(X, E) =
∫

ch(E) ∩ Td(X).

Here, X is a complete variety and E is a vector bundle on X. We will now
unpack this definition and try to understand how its statement reduces to the
classical Riemann-Roch theorem in the special case that X is a proper curve
and E is a line bundle defined by a divisor D.

First, by definition, the left-hand side is simply the Euler characteristic of E

which we already discussed above. The integral sign on the right-hand side
means that one takes the degree of the term which follows. Hence it remains
to define the two terms ch(E) and Td(X). We start with the chern character
ch(E), for which we will only give a definition when E = L is a line bundle.
The general definition is then obtained by applying the splitting principal and
requiring the chern class to be multiplicative.

Definition 1.1. Let L be a line bundle on a variety X. We define the chern
character of L to be the element of A∗(X)Q defined by

ch(L) := exp(c1(L)).

We proceed similarly for the definition of the Todd class Td(X) of X, whose
definition is however somewhat more involved. We start by defining the Todd
class of a line bundle (again, requiring multiplicativity extends this definition to
a general vector bundle).

Definition 1.2. Let L be a line bundle on a variety X. We define the Todd
class of L to be the element of A∗(X)Q defined by

td(L) := c1(L)/(1 − exp(−c1(L))).

In the non-singular case, the class Td(X) is then defined to be td(TX), where
TX is the tangent bundle of X. However, this cannot immediately be generalized
to the singular case, since in this case TX may no longer actually be a vector
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bundle. We can fix this by observing that if f : X ′ → X is a proper birational
morphism of non-singular varieties with f∗(OX′) = OX and Rif∗(OX′) = 0
for all i > 0 (e.g., f is the blowup of a variety at a smooth subvariety), then
f∗(Td(X ′)) = Td(X). Using the resolution of singularities and requiring this
property to hold even in the singular case allows us to extend the definition of
Td(X) to arbitrary varieties.

That was a lot of work just to define the objects in the statement of the
Hirzebruch-Riemann-Roch theorem! Now let’s see how the left-hand side reduces
to deg(D) − g + 1 in the case that X = C is a non-singular proper curve. In this
case, all Chow groups in dimensions higher than 1 vanish, so we get:

ch(L) ∩ Td(X) = (1 + c1(L))(1 + 1
2c1(TX)).

But TX is simply the dual of ΩX and hence c1(TX) = −c1(ΩX). That being
said, we get:

ch(L) ∩ Td(X) = 1 + c1(L) − 1
2c1(ΩX).

Now c1(L) is precisely the divisor D defining L and similarly, c1(ΩX) is the
divisor defining the canonical sheaf, which can be shown to have degree 2g − 2.
Hence, taking the degree, we get:

deg
(

1 + c1(L) − 1
2c1(ΩX)

)
= deg(D) − g + 1

as required.

In the higher dimensional case, the Hirzebruch-Riemann-Roch theorem for a line
bundle L, says:

χ(X, L) =
n∑

k=0

1
k! deg(c1(L)k ∩ Tdk(X)).

The upshot of working with toric varieties is now that, at least in the non-singular
case, we have an explicit way of computing ΩX , as we saw a few lectures ago.
Namely, for X a non-singular toric variety, we have the relation:

c(Ω1
X) ·

d∏
i=1

c(ODi) = 1,

coming from the short exact sequence:

0 → Ω1
X → Ω1

X(log D) →
d⊕

i=1
ODi

→ 0,

where Di are the boundary divisors of X (Note that we are using the more
general definition of a chern class of the coherent sheaves ODi

here. This is
well-defined only when X is non-singular). We can use this to show the following:
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Lemma 1.1.

c(TX) =
d∏

i=1
(1 + Di) =

∑
σ∈∆

[V (σ)].

Therefore, by definition of the Todd class:

td(TX) =
d∏

i=1

Di

1 − exp(−Di)
.

Proof. First we start with the short exact sequence associated with the effective
divisor Di:

0 → O(−Di) → OX → ODi
→ 0.

From this and using the fact that c(O(−Di)) = 1 − [Di], we obtain:

c(ODi
) = (1 − [Di])−1.

Therefore:

c(Ω1
X) =

d∏
i=1

(1 − [Di]).

Since TX = Ω∨
X , using the relationship ci(E∨) = (−1)ici(E) shows:

c(TX) =
d∏

i=1
(1 + [Di]).

Note however, that the Di need actually not be Chern roots of TX , since there
may be more than n of them. Using the relation Td(X(∆)) = f∗(X(∆′)) for a
proper birational map f : X(∆′) → X(∆), then gives us a method for computing
the Todd class of an arbitrary toric variety (which is far from given for an
arbitrary variety!).

Having developed all this algebraic language, we will now use it to show some non-
trivial facts coming from combinatorics. Namely, as we saw when we discussed
line bundles on toric varieties, for a T-Cartier divisor D which is generated
by its sections, the higher cohomology groups vanish and the space of sections
is the number of lattice points in a certain convex polytope P = PD, whose
vertices line in the lattice M . We denote this number by #(P ) := |P ∩ M |. The
Hirzebruch-Riemann-Roch theorem now tells us:

#(P ) =
n∑

k=0

1
k! deg(Dk ∩ Tdk(X)). (*)

In fact, every convex rational polytope arrises as PD for some T-Cartier divisor
on some toric variety. Namely, we can always find a complete fan which contains
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the hyperplanes parallel to the faces of P so that we can find some divisor which
corresponds to P . One can even relate the right-hand side to the volume of the
Polytope, by observing that

V ol(P ) = lim
ν→∞

#(νP )
νn

.

Namely, since the polytope νPD = PνD, this means that

V ol(P ) = νn lim
ν→∞

n∑
k=0

νk

k! deg(Dk ∩ Tdk(X))

= lim
ν→∞

1
n! deg(Dn ∩ Tdn(X))

= deg(Dn)
n! .

From this, even without any deeper analysis, we get the following (mildly)
non-obvious statement about the volume of convex polytopes:
Proposition 1.1. Let P ⊆ Rn be a convex rational polytope with vertices in the
integer lattice. Then n! · V ol(P ) is an integer.

In low dimensions, further inspection of (*) leads to more refined results. For
instance:
Theorem 1.1 (Pick’s formula). Let P ⊆ R2 be a convex rational polygon.
Then:

#(P ) = Area(P ) + 1
2 · Perimeter(P ) + 1

where the length of an edge of P is calculated in the quotient lattice of Z2.

For the proof we will need to have a more detailed description of the Todd class:
Lemma 1.2. Let X be a toric variety with boundary divisors D1, . . . , Dn. Write
Td(X) = Tdn(X) + Tdn−1(X) + · · · + Td0(X), where Tdk(X) ∈ Ak(X)Q. Then
the following statements hold:

1. Tdn(X) = [X]
2. Tdn−1(X) = 1

2
∑

[Di], where Di are the boundary divisors of X.
3. If dim(X) = 2, then Td0(X) = [x]

Proof. We will deduce all of these facts starting from the definition of the Todd
class in the non-singular case:

Td(X) = td(TX) = 1 + 1
2c1(TX) + · · · + 1

n!c1(TX)n.

Here, 1 = [X] and thus the first statement is clear when X is non-singular. For
the general case, let X ′ be a toric variety and pick a proper birational morphism
ϕ : X → X ′ from some non-singular toric variety X, such that ϕ∗(OX) = OX′

(this exists by desingularization). The second fact is precisely the statement that
ϕ∗([X]) = [X ′], whence the first claim.
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For the second claim, we must show that c1(TX) =
∑

[Di] when X is a non-
singular variety. This in fact follows immediately from Lemma 1.1, by expanding
the right-hand side. For a general X ′, pick ϕ∗ : X → X ′ as above. But we have
seen, that for any proper morphism of toric varieties, f∗[V (σ)] = [V (σ′)], if σ is
contained in some cone σ of equal dimension and f∗[V (σ)] = 0 otherwise. Since
X is a subdivision of X ′, it follows at once, that f∗(

∑
[Di] =

∑
[D′

i].

Finally, for the last statement, in the non-singular case we can simply compute
the entire expansion of Td(X) (which has only terms up to degree 2). This
yields:

Td(X) =
d∏

i=1

Di

1 − exp(−Di)

=
d∏

i=1

Di

1 − 1 + Di − 1
2 D2

i + 1
6 D3

i

=
d∏

i=1

1
1 − 1

2 Di + 1
6 D2

i

=
d∏

i=1

∞∑
n=0

(1
2Di − 1

6D2
i )n

= 1 + 1
2

(
d∑

i=1
Di

)
+ 1

4

∑
{i,j}

Di · Dj

− 1
6

(
d∑

i=1
D2

i

)

= 1 + 1
2

(
d∑

i=1
Di

)
+ 1

4

 ∑
{i,j},i̸=j

Di · Dj

+ 1
12

(
d∑

i=1
D2

i

)
.

Now in fact, it can be checked that D2
i = −ai[x], where aivi = vi−1 + vi+1, using

the results from last week. Moreover, these ai satisfy the equation

d∑
i=1

ai = 3d − 12.

Finally,
∑

i<j Di · Dj = d[x], since each cone appears exactly once. Hence:

Td(X) = 1 + 1
2

(
d∑

i=1
Di

)
+ [x].

The result for general X follows from the fact that if X → X ′ is birational, then
the preimage of a generic point is a single point.
Proof. Let X(∆) be a non-singular variety with a divisor D corresponding to P .
By Lemma 1.2, we have Td(X) = [X] + 1

2
∑d

i=1[Di] + [x] for some x ∈ X. Thus
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dimension 2, (*) reads:

#(P ) = deg([x]) + deg
(

1
2

d∑
i=1

D ∩ Di

)
+ 1

2 deg(D2 ∩ Td2(X)).

By the expression found above, the last term is precisely the area of P . Moreover,
the first term is 1. For the second term, observe that D ∩ Di corresponds to an
edge of P (or 0 if D and Di do not span a cone) and deg(D ∩ Di) is thus the
length of this edge in the quotient lattice.
Example 1.2. Consider the polygon given below:

We have:

Area(P ) = 19
2

Perimeter(P ) = 7
#(P ) = 14

and indeed:
19
2 + 7

2 + 1 = 14.
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