Cohomology of the line bundle
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We saw that a T-Cartier Divisor D = }_ a; D; determines a piecewise linear function yp € PL(A) on |A| by wp(v;) = —a;,
where v; is the first lattice point of a ray in A. Conversely we get [D] =Y —wp(v;)D;. This now defines a rational convex
polyhedron in Mg by

Pp ={u€ Mpl{u,v;) <—a;Vi}
={u€ Mplu<ypon|Al}
We also saw that the torus action gives a grading of the homology groups. For example for H, the global sections, we get

H(X,0D)) = @ H*(X,0(X))u
ueM

with
Cx“ ifuePpnM

H’(X,0(D)), = {
0 else
To generalize this we first define for any u € M the following conical set
Z(uw) ={ve|All{u, v) zyp ()}
First note that u € Pp if and only if Z(u) = |A|. With this we can now define the local cohomology groups
HZp(u)(lAl) = HP(|Al,|AI\ Z(u);©)

which are just the singular cohomology groups of the pair (JA],|A|\ Z(w)). Looking at the associated long exact sequence
with reduced cohomology groups we get for p > 0

R Hg(U)(IAI,IAI\Z(u)) — HP(A]) — HP(AI\ Z(w) i H;:[})(IAI,IAI\Z(M)) — HPYYAD — -
—— N———
0 0
For p = 0 we get nonzero local cohomology if |A|\ Z(u) = ¢@.

Proposition 1. We have for p = 0 that

HP(X,0(D) = @ HP(X,60(D)), with HP(X,0(D))y=Hy,, (A
ueM

The idea of the proofis to use the Cech complex C* using the affine cover X (A) = J X (o) defined by
C’= @ o0D)Usn---nUg,)

T(Qyeeny Up

HO(Ugon---nU(,p,@(D))

and then using a spectral argument.

Examples in P!

Before starting first a few words about P”. The fan of P” can be realised as all basis vectors and negative their sum
{e1,...,en,— Y ; e;}. Because this gives us n + 1 rays where any selection of »n primitive elements span all of R”, any piece-
wise linear function on |A| that is defined by its value on primitive ray elements can be made a linear function by changing
its value on at most one ray giving us

Pic(P") = PL(A)/ {linear functions} = Z



We can therefore represent a line bundle ¢'(D), up to isomorphism, with an integer as 0(n). Let H = P"~1 c P” 3, in our
case T-invariant, subvariety, then these line bundles correspond to a divisor nH and & (n) := @(nH) to functions to Al
which have a pole of order at most n on H. On the fan they can be represented by a piecewise linear function that is —n
on one primitive ray element and 0 on the others.
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If we now look at P! the graph of a e; € M isjust aline going throw the origin and the point (1, i). For (1) we see that this
line is above or on the graph of the representing function for i € {—1,0} so Pp = {efl, 0} meaning H'PL,e1) =C Xeil oC XO.
We don'’t get any higher cohomology as the compliment of a conical set in R only has nonzero reduced cohomology if it is
the complement of the origin and no e is only at 0 above the function.
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For & (-1) on the other hand we easily see that there neither is a e} always on or above the function nor only at 0 not below
so we get no cohomology.
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For 0 (-2) we again get H*(P',0(D)) = 0 but now e} is only at 0 above or on the graph of the function giving us for p > 1

0 else
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Convex case

Corollary. IfX is affine, thus|A| a single cone and y p linear, then HP (X,0 (D)) =0 for any D.

Proof. Since for all u € M both |A] and |A|\ Z(u) are convex, thus contractible as v is linear on a single cone, the local
cohomology groups in the exact sequence defining are sandwiched between 0, thus 0 themselves. O

As a generalization we get the following corollary.
Corollary. If|A| is convex and O (D) is generated by sections then HP (X,0 (D)) =0 forall p > 0.

A\In Fulton’s convention convex function means that the set below the graph is convex A
Proof. Follows as before as we saw that ©'(D) is generated by sections if and only if ¢ p is convex so |A|\ Z(w) is convex. O

Note that in P! as in the examples before we immediately get for any n = 0 that @(-n) has trivial higher cohomology.
Remember that being generated by sections means that for every x € X there exists a section, here a function to A!, that
is not zero at x. For n < 0 we can just take constant functions so H” (X, (n)) = 0 for p > 0 but since for n < 0 we have per
definition only functions with a zero in our sheaf,thus the line bundle is not generated by it’s sections so we can get higher
cohomology.

Examples in P?
As before for ©(1) we see that the associated function is convex so we have no higher cohomology. To find HO(PL,0(1))

we need to find Pp. Write M = {ae;‘ + be; |a, b € Z}, then for u € Pp we need a, b = 0 for the first quadrant, but the left and
lower cone demand a, b < 0so H°(P!,0(1)) = C °.

o 0




In P! we got higher cohomology for @(—2). In P? on the other hand we can verify that there is no cohomology. That is as
Pp = ¢ as the set above v is a strictly convex cone, and for higher groups we first look at

0 ono;
Zw) ={ve N|{(w,v)) zypWw)} =13 a,b| avi +bv; = —2v1 ono,
-2V 0nos
If we denote H(a,b) ={ve M | {(a, b), v) = 0} we can write this as the set of the following intersections
Zu)=(o1nH(a,b)u(ocanH(a-2,b))u(csn H(a,b-2))

Going through all case distinctions one can check that Z(u) is always simply connected and never isolates zero, thus there
is no higher cohomology.

0(-2) 0t o1
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For ©(-3) on the other hand one checks that we again get a nonzero first cohomology group at u = 2e] —e; so

HP(P?,0(-3)) = {CXRT_E; forp=1
' 0

else
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