Cohomology of the line bundle

401-3140-73L Toric Geometry

14.11.2023 HS23

We saw that a T-Cartier Divisor $D = \sum a_i D_i$ determines a piecewise linear function $\psi_D \in PL(\Delta)$ on $|\Delta|$ by $\psi_D(v_i) = -a_i$, where v_i is the first lattice point of a ray in Δ . Conversely we get $[D] = \sum -\psi_D(v_i)D_i$. This now defines a rational convex polyhedron in $M_{\mathbb{R}}$ by

$$P_D = \{ u \in M_{\mathbb{R}} | \langle u, v_i \rangle \le -a_i \,\forall i \}$$
$$= \{ u \in M_{\mathbb{R}} | \, u \le \psi_D \text{ on } |\Delta| \}$$

We also saw that the torus action gives a grading of the homology groups. For example for H^0 , the global sections, we get

$$H^{0}(X, \mathcal{O}(D)) = \bigoplus_{u \in M} H^{0}(X, \mathcal{O}(X))_{u}$$

with

$$H^{0}(X, \mathcal{O}(D))_{u} = \begin{cases} \mathbb{C} \chi^{u} & \text{if } u \in P_{D} \cap M \\ 0 & \text{else} \end{cases}$$

To generalize this we first define for any $u \in M$ the following conical set

$$Z(u) = \{ v \in |\Delta| | \langle u, v \rangle \ge \psi_D(v) \}$$

First note that $u \in P_D$ if and only if $Z(u) = |\Delta|$. With this we can now define the local cohomology groups

$$H^p_{Z(u)}(|\Delta|) = H^p(|\Delta|, |\Delta| \setminus Z(u); \mathbb{C})$$

which are just the singular cohomology groups of the pair $(|\Delta|, |\Delta| \setminus Z(u))$. Looking at the associated long exact sequence with reduced cohomology groups we get for p > 0

$$\cdots \to H^p_{Z(U)}(|\Delta|, |\Delta| \setminus Z(u)) \to \underbrace{\tilde{H}^p(|\Delta|)}_{0} \to \tilde{H}^p(|\Delta| \setminus Z(u)) \xrightarrow{\cong} H^{p+1}_{Z(U)}(|\Delta|, |\Delta| \setminus Z(u)) \to \underbrace{\tilde{H}^{p+1}(|\Delta|)}_{0} \to \cdots$$

For p = 0 we get nonzero local cohomology if $|\Delta| \setminus Z(u) = \emptyset$.

Proposition 1. We have for $p \ge 0$ that

$$H^{p}(X,\mathcal{O}(D)) = \bigoplus_{u \in M} H^{p}(X,\mathcal{O}(D))_{u} \quad with \quad H^{p}(X,\mathcal{O}(D))_{u} = H^{p}_{Z(u)}(|\Delta|)$$

The idea of the proof is to use the Čech complex C^{\bullet} using the affine cover $X(\Delta) = \bigcup X(\sigma)$ defined by

$$C^{p} = \bigoplus_{\sigma_{0},...,\sigma_{p}} \underbrace{\mathscr{O}(D)(U_{\sigma_{0}} \cap \dots \cap U_{\sigma_{p}})}_{H^{0}(U_{\sigma_{0}} \cap \dots \cap U_{\sigma_{p}}, \mathscr{O}(D))}$$

and then using a spectral argument.

Examples in \mathbb{P}^1

Before starting first a few words about \mathbb{P}^n . The fan of \mathbb{P}^n can be realised as all basis vectors and negative their sum $\{e_1, \ldots, e_n, -\sum_i e_i\}$. Because this gives us n + 1 rays where any selection of n primitive elements span all of \mathbb{R}^n , any piecewise linear function on $|\Delta|$ that is defined by its value on primitive ray elements can be made a linear function by changing its value on at most one ray giving us

$$\operatorname{Pic}(\mathbb{P}^n) \cong \operatorname{PL}(\Delta) / \{ \operatorname{linear functions} \} \cong \mathbb{Z}$$

We can therefore represent a line bundle $\mathcal{O}(D)$, up to isomorphism, with an integer as $\mathcal{O}(n)$. Let $H \cong \mathbb{P}^{n-1} \subseteq \mathbb{P}^n$ a, in our case T-invariant, subvariety, then these line bundles correspond to a divisor nH and $\mathcal{O}(n) := \mathcal{O}(nH)$ to functions to \mathbb{A}^1 which have a pole of order at most n on H. On the fan they can be represented by a piecewise linear function that is -n on one primitive ray element and 0 on the others.

If we now look at \mathbb{P}^1 the graph of a $e_i^* \in M$ is just a line going throw the origin and the point (1, i). For $\mathcal{O}(1)$ we see that this line is above or on the graph of the representing function for $i \in \{-1, 0\}$ so $P_D = \{e_{-1}^*, 0\}$ meaning $H^0(\mathbb{P}^1, \mathcal{O}(1)) = \mathbb{C}\chi^{e_{-1}^*} \oplus \mathbb{C}\chi^0$. We don't get any higher cohomology as the complement of a conical set in \mathbb{R} only has nonzero reduced cohomology if it is the complement of the origin and no e_i^* is only at 0 above the function.

For $\mathcal{O}(-1)$ on the other hand we easily see that there neither is a e_i^* always on or above the function nor only at 0 not below so we get no cohomology.

For $\mathcal{O}(-2)$ we again get $H^0(\mathbb{P}^1, \mathcal{O}(D)) = 0$ but now e_1^* is only at 0 above or on the graph of the function giving us for p > 1

$$H^{p}(\mathbb{P}^{1}, \mathcal{O}(-2)) \cong \tilde{H}^{p-1}(\mathbb{R} \setminus \{0\}) \cong \begin{cases} \mathbb{C} & \text{for } p = 1 \\ 0 & \text{else} \end{cases}$$

Convex case

Corollary. If X is affine, thus $|\Delta|$ a single cone and ψ_D linear, then $H^p(X, \mathcal{O}(D)) = 0$ for any D.

Proof. Since for all $u \in M$ both $|\Delta|$ and $|\Delta| \setminus Z(u)$ are convex, thus contractible as ψ is linear on a single cone, the local cohomology groups in the exact sequence defining are sandwiched between 0, thus 0 themselves.

As a generalization we get the following corollary.

Corollary. If $|\Delta|$ is convex and $\mathcal{O}(D)$ is generated by sections then $H^p(X, \mathcal{O}(D)) = 0$ for all p > 0.

▲ In Fulton's convention convex function means that the set below the graph is convex ▲

Proof. Follows as before as we saw that $\mathcal{O}(D)$ is generated by sections if and only if ψ_D is convex so $|\Delta| \setminus Z(u)$ is convex. \Box

Note that in \mathbb{P}^1 as in the examples before we immediately get for any $n \ge 0$ that $\mathcal{O}(-n)$ has trivial higher cohomology. Remember that being generated by sections means that for every $x \in X$ there exists a section, here a function to \mathbb{A}^1 , that is not zero at x. For $n \le 0$ we can just take constant functions so $H^p(X, \mathcal{O}(n)) = 0$ for p > 0 but since for n < 0 we have per definition only functions with a zero in our sheaf, thus the line bundle is not generated by it's sections so we can get higher cohomology.

Examples in \mathbb{P}^2

As before for $\mathcal{O}(1)$ we see that the associated function is convex so we have no higher cohomology. To find $H^0(\mathbb{P}^1, \mathcal{O}(1))$ we need to find P_D . Write $M = \{ae_1^* + be_2^* | a, b \in \mathbb{Z}\}$, then for $u \in P_D$ we need $a, b \ge 0$ for the first quadrant, but the left and lower cone demand $a, b \le 0$ so $H^0(\mathbb{P}^1, \mathcal{O}(1)) = \mathbb{C}\chi^0$.

In \mathbb{P}^1 we got higher cohomology for $\mathcal{O}(-2)$. In \mathbb{P}^2 on the other hand we can verify that there is no cohomology. That is as $P_D = \phi$ as the set above ψ_D is a strictly convex cone, and for higher groups we first look at

$$Z(u) = \left\{ v \in N \middle| \langle (u, v) \rangle \ge \psi_D(v) \right\} = \left\{ \begin{array}{cc} o & \text{on } \sigma_1 \\ a, b \middle| av_1 + bv_1 \ge -2v_1 & \text{on } \sigma_2 \\ -2v_2 & \text{on } \sigma_3 \end{array} \right\}$$

If we denote $H(a, b) = \{v \in M | \langle (a, b), v \rangle \ge 0\}$ we can write this as the set of the following intersections

$$Z(u) = (\sigma_1 \cap H(a, b)) \cup (\sigma_2 \cap H(a-2, b)) \cup (\sigma_3 \cap H(a, b-2))$$

Going through all case distinctions one can check that Z(u) is always simply connected and never isolates zero, thus there is no higher cohomology.

For $\mathcal{O}(-3)$ on the other hand one checks that we again get a nonzero first cohomology group at $u = 2e_1^* - e_2^*$ so

$$H^{p}(\mathbb{P}^{2}, \mathcal{O}(-3)) = \begin{cases} \mathbb{C} \chi^{2e_{1}^{*}-e_{2}^{*}} & \text{for } p = 1\\ 0 & \text{else} \end{cases}$$

References

[Ful93] William Fulton. Introduction to Toric Varieties. (AM-131). Princeton University Press, 1993. ISBN: 9780691000497.

[Hat02] A. Hatcher. *Algebraic Topology*. Algebraic Topology. Cambridge University Press, 2002. ISBN: 9780521795401. URL: https://pi.math.cornell.edu/~hatcher/AT/AT.pdf.