# Cohomology of the line bundle 

401-3140-73L Toric Geometry

### 14.11.2023 HS23

We saw that a T-Cartier Divisor $D=\sum a_{i} D_{i}$ determines a piecewise linear function $\psi_{D} \in \operatorname{PL}(\Delta)$ on $|\Delta|$ by $\psi_{D}\left(v_{i}\right)=-a_{i}$, where $v_{i}$ is the first lattice point of a ray in $\Delta$. Conversely we get $[D]=\sum-\psi_{D}\left(v_{i}\right) D_{i}$. This now defines a rational convex polyhedron in $M_{\mathbb{R}}$ by

$$
\begin{aligned}
P_{D} & =\left\{u \in M_{\mathbb{R}} \mid\left\langle u, v_{i}\right\rangle \leq-a_{i} \forall i\right\} \\
& =\left\{u \in M_{\mathbb{R}} \mid u \leq \psi_{D} \text { on }|\Delta|\right\}
\end{aligned}
$$

We also saw that the torus action gives a grading of the homology groups. For example for $H^{0}$, the global sections, we get

$$
H^{0}(X, \mathscr{O}(D))=\bigoplus_{u \in M} H^{0}(X, \mathscr{O}(X))_{u}
$$

with

$$
H^{0}(X, \mathscr{O}(D))_{u}= \begin{cases}\mathbb{C} \chi^{u} & \text { if } u \in P_{D} \cap M \\ 0 & \text { else }\end{cases}
$$

To generalize this we first define for any $u \in M$ the following conical set

$$
Z(u)=\left\{v \in \mid \Delta \|\langle u, v\rangle \geq \psi_{D}(\nu)\right\}
$$

First note that $u \in P_{D}$ if and only if $Z(u)=|\Delta|$. With this we can now define the local cohomology groups

$$
H_{Z(u)}^{p}(|\Delta|)=H^{p}(|\Delta|,|\Delta| \backslash Z(u) ; \mathbb{C})
$$

which are just the singular cohomology groups of the pair $(|\Delta|,|\Delta| \backslash Z(u))$. Looking at the associated long exact sequence with reduced cohomology groups we get for $p>0$

$$
\cdots \rightarrow H_{Z(U)}^{p}(|\Delta|,|\Delta| \backslash Z(u)) \rightarrow \underbrace{\tilde{H}^{p}(|\Delta|)}_{0} \rightarrow \tilde{H}^{p}(|\Delta| \backslash Z(u)) \stackrel{\cong}{\rightarrow} H_{Z(U)}^{p+1}(|\Delta|,|\Delta| \backslash Z(u)) \rightarrow \underbrace{\tilde{H}^{p+1}(|\Delta|)}_{0} \rightarrow \cdots
$$

For $p=0$ we get nonzero local cohomology if $|\Delta| \backslash Z(u)=\varnothing$.
Proposition 1. We have for $p \geq 0$ that

$$
H^{p}(X, \mathscr{O}(D))=\bigoplus_{u \in M} H^{p}(X, \mathscr{O}(D))_{u} \quad \text { with } \quad H^{p}(X, \mathscr{O}(D))_{u}=H_{Z(u)}^{p}(|\Delta|)
$$

The idea of the proof is to use the Čech complex $C^{\bullet}$ using the affine cover $X(\Delta)=\cup X(\sigma)$ defined by

$$
C^{p}=\bigoplus_{\sigma_{0}, \ldots, \sigma_{p}} \underbrace{\mathscr{O}(D)\left(U_{\sigma_{0}} \cap \cdots \cap U_{\sigma_{p}}\right)}_{H^{0}\left(U_{\sigma_{0}} \cap \cdots \cap U_{\sigma_{p}}, \mathscr{O}(D)\right)}
$$

and then using a spectral argument.

## Examples in $\mathbb{P}^{1}$

Before starting first a few words about $\mathbb{P}^{n}$. The fan of $\mathbb{P}^{n}$ can be realised as all basis vectors and negative their sum $\left\{e_{1}, \ldots, e_{n},-\sum_{i} e_{i}\right\}$. Because this gives us $n+1$ rays where any selection of $n$ primitive elements span all of $\mathbb{R}^{n}$, any piecewise linear function on $|\Delta|$ that is defined by its value on primitive ray elements can be made a linear function by changing its value on at most one ray giving us

$$
\operatorname{Pic}\left(\mathbb{P}^{n}\right) \cong \operatorname{PL}(\Delta) /\{\text { linear functions }\} \cong \mathbb{Z}
$$

We can therefore represent a line bundle $\mathscr{O}(D)$, up to isomorphism, with an integer as $\mathscr{O}(n)$. Let $H \cong \mathbb{P}^{n-1} \subseteq \mathbb{P}^{n}$ a, in our case T-invariant, subvariety, then these line bundles correspond to a divisor $n H$ and $\mathscr{O}(n):=\mathscr{O}(n H)$ to functions to $\mathbb{A}^{1}$ which have a pole of order at most $n$ on $H$. On the fan they can be represented by a piecewise linear function that is $-n$ on one primitive ray element and 0 on the others.


If we now look at $\mathbb{P}^{1}$ the graph of a $e_{i}^{*} \in M$ is just a line going throw the origin and the point $(1, i)$. For $\mathscr{O}(1)$ we see that this line is above or on the graph of the representing function for $i \in\{-1,0\}$ so $P_{D}=\left\{e_{-1}^{*}, 0\right\}$ meaning $H^{0}\left(\mathbb{P}^{1}, \mathscr{O}(1)\right)=\mathbb{C} \chi^{e_{-1}^{*}} \oplus \mathbb{C} \chi^{0}$. We don't get any higher cohomology as the compliment of a conical set in $\mathbb{R}$ only has nonzero reduced cohomology if it is the complement of the origin and no $e_{i}^{*}$ is only at 0 above the function.


For $\mathscr{O}(-1)$ on the other hand we easily see that there neither is a $e_{i}^{*}$ always on or above the function nor only at 0 not below so we get no cohomology.


For $\mathscr{O}(-2)$ we again get $H^{0}\left(\mathbb{P}^{1}, \mathscr{O}(D)\right)=0$ but now $e_{1}^{*}$ is only at 0 above or on the graph of the function giving us for $p>1$

$$
H^{p}\left(\mathbb{P}^{1}, \mathscr{O}(-2)\right) \cong \tilde{H}^{p-1}(\mathbb{R} \backslash\{0\}) \cong \begin{cases}\mathbb{C} & \text { for } p=1 \\ 0 & \text { else }\end{cases}
$$



## Convex case

Corollary. If $X$ is affine, thus $|\Delta|$ a single cone and $\psi_{D}$ linear, then $H^{p}(X, \mathscr{O}(D))=0$ for any $D$.
Proof. Since for all $u \in M$ both $|\Delta|$ and $|\Delta| \backslash Z(u)$ are convex, thus contractible as $\psi$ is linear on a single cone, the local cohomology groups in the exact sequence defining are sandwiched between 0 , thus 0 themselves.

As a generalization we get the following corollary.
Corollary. $I f|\Delta|$ is convex and $\mathscr{O}(D)$ is generated by sections then $H^{p}(X, \mathscr{O}(D))=0$ for all $p>0$.
$\triangle$ In Fulton's convention convex function means that the set below the graph is convex $\uparrow$
Proof. Follows as before as we saw that $\mathscr{O}(D)$ is generated by sections if and only if $\psi_{D}$ is convex so $|\Delta| \backslash Z(u)$ is convex.
Note that in $\mathbb{P}^{1}$ as in the examples before we immediately get for any $n \geq 0$ that $\mathscr{O}(-n)$ has trivial higher cohomology. Remember that being generated by sections means that for every $x \in X$ there exists a section, here a function to $A^{1}$, that is not zero at $x$. For $n \leq 0$ we can just take constant functions so $H^{p}(X, \mathscr{O}(n))=0$ for $p>0$ but since for $n<0$ we have per definition only functions with a zero in our sheaf, thus the line bundle is not generated by it's sections so we can get higher cohomology.

## Examples in $\mathbb{P}^{2}$

As before for $\mathscr{O}(1)$ we see that the associated function is convex so we have no higher cohomology. To find $H^{0}\left(\mathbb{P}^{1}, \mathscr{O}(1)\right)$ we need to find $P_{D}$. Write $M=\left\{a e_{1}^{*}+b e_{2}^{*} \mid a, b \in \mathbb{Z}\right\}$, then for $u \in P_{D}$ we need $a, b \geq 0$ for the first quadrant, but the left and lower cone demand $a, b \leq 0$ so $H^{0}\left(\mathbb{P}^{1}, \mathscr{O}(1)\right)=\mathbb{C} \chi^{0}$.


In $\mathbb{P}^{1}$ we got higher cohomology for $\mathscr{O}(-2)$. In $\mathbb{P}^{2}$ on the other hand we can verify that there is no cohomology. That is as $P_{D}=\varnothing$ as the set above $\psi_{D}$ is a strictly convex cone, and for higher groups we first look at

$$
Z(u)=\left\{v \in N \mid\langle(u, v)\rangle \geq \psi_{D}(v)\right\}=\left\{a, b \left\lvert\, a v_{1}+b v_{1} \geq \begin{array}{cc}
o & \text { on } \sigma_{1} \\
-2 v_{1} & \text { on } \sigma_{2} \\
-2 v_{2} & \text { on } \sigma_{3}
\end{array}\right.\right\}
$$

If we denote $H(a, b)=\{v \in M \mid\langle(a, b), v\rangle \geq 0\}$ we can write this as the set of the following intersections

$$
Z(u)=\left(\sigma_{1} \cap H(a, b)\right) \cup\left(\sigma_{2} \cap H(a-2, b)\right) \cup\left(\sigma_{3} \cap H(a, b-2)\right)
$$

Going through all case distinctions one can check that $Z(u)$ is always simply connected and never isolates zero, thus there is no higher cohomology.


For $\mathscr{O}(-3)$ on the other hand one checks that we again get a nonzero first cohomology group at $u=2 e_{1}^{*}-e_{2}^{*}$ so

$$
H^{p}\left(\mathbb{P}^{2}, \mathscr{O}(-3)\right)= \begin{cases}\mathbb{C} \chi^{2 e_{1}^{*}-e_{2}^{*}} & \text { for } p=1 \\ 0 & \text { else }\end{cases}
$$

## References

[Ful93] William Fulton. Introduction to Toric Varieties. (AM-131). Princeton University Press, 1993. ISBN: 9780691000497.
[Hat02] A. Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University Press, 2002. ISBN: 9780521795401. URL: https://pi.math.cornell.edu/~hatcher/AT/AT.pdf.

