
A CRASH COURSE ON SHEAVES AND COHOMOLOGY

1. Sheaves

. We start with a topological space X – it could be a scheme, a toric variety, a
manifold, or whatever topological space you like. From X, we may a category Op(X),
whose objects are the open sets U ⊂ X, and with a map U → V if U ⊂ V . If you don’t
know what a category is, you can think of Op(X) as the set

{U ⊂ X : U open}
which comes with a partial order, U ≤ V if U ⊂ V .

A pre-sheaf is a “contravariant functor” F from Op(X) to the category of abelian
groups. What this means is the following piece of data:

(1) For each U ⊂ X, an abelian group F (U).
(2) For each U ⊂ V , a homomorphism

rUV : F (V ) → F (U)

We will also assume F (∅) = 0. The elements s ∈ F (U) are called the sections of F
along U .

A presheaf is called a sheaf if it satisfies the following “gluing” axiom:

• For any open sets U, V ⊂ X, set W = U ∩ V . Then there is an exact sequence,

0 F (U ∪ V ) F (U)⊕ F (V ) F (U ∩ V )
rUW−rV W

What this says in words is that the sections of F on U ∪ V are exactly pairs of sections
sU on U and sV on V which “glue”, i.e. which agree on the overlap U ∩ V .

Definition 1.1. The group F (X) is called the group of global sections of F ; it is also
called the 0-th cohomology group of F , denoted by H0(X,F ).

From the sheaf axiom, it follows that we can computeH0(X,F ) by writingX = U∪V
and taking the kernel of the map

F (U)⊕ F (V ) → F (U ∩ V )

Exercise 1.2. Let {U1, · · · , Un} be an open cover of X (i.e. X = ∪n
i=1Ui). Put

Uij = Ui ∩ Uj , and write rij and rji for the restriction maps1

rij : F (Ui) → F (Uij)

rji : F (Uj) → F (Uji)

Show that F (X) is the kernel of the map

⊕n
i=1F (Ui) ⊕i<jF (Uij)

rij−rji

1to avoid writing monstrosities such as rUiUij

1



2 A CRASH COURSE ON SHEAVES AND COHOMOLOGY

(Hint: Use induction on n)

1.1. Examples. We now present some examples of sheaves.

Example 1.3. Let X be a manifold, and OX be the sheaf of smooth functions on X,
defined as

OX(U) = {f : U → R : f infinitely differentiable}
Restrictions OX(V ) → OX(U) for U ⊂ V are literally restrictions of functions: f : V →
R restricts to f |U : U → R.

Example 1.4. Let X be a manifold. We define ΩX to be the sheaf of differential
one-forms on X,

ΩX(U) = {ω a one form on U}
Restriction is as above. If U has a system of coordinates x1, · · · , xn, differential forms
are simply ∑

fidxi

for functions fi. But we do not assume that we can choose coordinates globally on U ,
and the definition still makes sense.

Example 1.5. Let X be an algebraic variety. The structure sheaf OX is defined to be
the set of maps

f : X → A1

More explicitly, if V ⊂ X is affine, isomorphic to SpecA, we put

OX(V ) = {f : V → A1} = A

If V ⊂ U is a basic open set, corresponding to a localization A → Af , the restriction
map

OX(V ) → OX(U)

is exactly the localization
A→ Af

To understand the example a little better, try:

Exercise 1.6. Let X = SpecA be an affine variety. Then

Hom(X,A1) = A

Example 1.7. There are also variations to the structure sheaf above. We can put

O∗
X(U) = {f ∈ OX(U) : f is invertible}

and
K∗

X = {f ∈ K(U)− 0}
Here K(U) is the field of rational functions on U , and ∗ means we take the units in it,
i.e. the non-zero elements.

We note that on a variety X, K∗
X has an amazing feature:

K∗
X(U) = K(U)∗ = K(X)∗ = K∗

X(X)

because the fraction field of X and any open set is the same. It follows that K∗
X is

what’s called a constant sheaf.
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Example 1.8. A generalization of the above is as follows. Let X be a topological space,
and G an abelian group. The constant sheaf G is defined by

G(U) =
⊕

connected components of U

G

The restriction G(V ) → G(U) for U ⊂ V is the “obvious one”. A connected component
U ′ of U is inside a unique connected component V ′ of V , and we take g in the compo-
nent corresponding to V ′ to itself in the component corresponding to U ′. Elements in
connected components of V that do not meat U are mapped to 0.

Notice that K∗
X above is a constant sheaf with group K∗(X). Note also that K∗

X is
even more special than your average constant sheaf: because for a connected variety X,
any open set is connected, K∗

X is is literally constant on any U .

Exercise 1.9. Show that the definition of constant sheaf we gave above is the “correct
one”, i.e. that the naive definition fails.

Specifically, let G be a group. Suppose F is the presheaf defined by F (U) = G (and
F (∅) = 0). Find an example of a topological space X in which this rule does not give
a sheaf.

1.2. Cohomology. Let X be a topological space, and F a sheaf on X. Cohomology
groups take the idea of global sections a little further. We start with X and an open
cover U1, · · · , Um of X. As we have seen above, we can compute H0(X,F ) as the kernel
of the map

⊕F (Ui) ⊕i<jF (Uij)
rij−rji

If we continue with this reasoning, we can form the triple intersections Uijk = Ui∩Uj∩Uk,
quadruple intersections Uijkl, and so on. To avoid making a total mess of the notation,
for a subset I = {i1, · · · , in} of 1, · · · ,m, let’s put

F (UI) := F (Ui1 ∩ Ui2 ∩ · · ·Uin)

We note that whenever I ⊂ J , we have a restriction map

F (UI) → F (UJ)

We now fix a set J = {i1, · · · , in} of size n. We note that there are exactly n subsets

of J of size n − 1, namely the sets Jk = {i1, · · · , îk, · · · , in} obtained by removing the
k-th element ik from J . For each k, we have a restriction map

rJ,k : F (UJk) → F (UJ)

and so we can define a “differential”

dJ :=

n∑
k=1

(−1)k−1rJ,k

from
n⊕

k=1

F (UJk) → F (UJ)

Assembling these differentials together gives a map⊕
I:|I|=n−1 F (UI)

⊕
J :|J |=n F (UJ)

dn−1
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For the sake of concreteness, the sets of size 1 are precisely the singletons i ∈ [1, · · · ,m],
and the sets of size two are the pairs i < j. In this case, the map⊕

I:|I|=1

F (UI) →
⊕

J :|J |=2

F (UJ)

is exactly the map rij − rji that we had above. Symbolically, we have a “complex”

0 ⊕n
i=1F (Ui) ⊕i<jF (Uij) ⊕|I|=3F (UI) ⊕|I|=4F (UI) · · ·d1 d2 d3

We have seen that

H0(X,F ) = ker d1

Definition 1.10. The i-th cohomology group

H i(X,F ) = ker di+1/ Im di

Actually the definition as given is incorrect. The correct definition requires that our
cover U1, · · · , Un is “fine enough” (otherwise you could take X as your cover and deduce
that H i(X,F ) = 0 always). However, we will not define what it means to be fine enough
here. Just know that

• For manifolds, the Ui should be isomorphic to a ball in Rn.
• For varieties, the Ui should consist of affine opens.
• For toric varieties X = X(∆, N), we can take X(σ,N) (σ ∈ ∆) as our cover.

Example 1.11. Let X = S1 be the circle, and F the constant sheaf Z. We will compute
H i(X,F ). We take a cover of S1 by two intervals U1, U2 (for example, (−ϵ, π + ϵ) and
(π − ϵ, 2π + ϵ) in polar coordinates). We see that U1 ∩ U2 is the intersections of two
smaller intervals, and so we have

F (U1) = Z, F (U2) = Z, F (U1 ∩ U2) = Z⊕ Z

We compute the restriction

r12 : F (U1) → F (U1 ∩ U2)

and see that it is simply the diagonal map

Z → Z⊕ Z

The retriction map F (U2) → F (U1 ∩ U2) is computed similarily. Thus, the map

d1 : F (U1)⊕ F (U2) → F (U12)

is the map

Z⊕ Z → Z⊕ Z
given by

(a, b) 7→ (a− b, a− b)

As there is no third index, the map d2 : F (U1 ∩ U2) → ⊕I:|I|=3 is the 0 map. Thus, we
find

H0(X,F ) = ker di = Z
and

H1(X,F ) = ker d2/ Im d1 = (Z⊕ Z)/Z = Z
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Exercise 1.12. Compute the cohomology groups of the sphere S2 for the constant
sheaf Z.

Exercise 1.13. Let X = P2. Compute

H i(X,OX)

(Hint: Use the open cover associated to the fan of P2 as a toric variety).

2. Long Exact Sequence

Calculations of cohomology groups can be very difficult. One of the most powerful
tools we have to help us in this problem is the so called “long exact sequence” associated
to a short exact sequence2.

Theorem 2.1. Let X be a topological space, and

0 → K → F → G→ 0

a short exact sequence of sheaves. Then we have a sequence

· · · H i−1(X,G) H i(X,K) H i(X,F ) H i(X,G) H i+1(X,K) · · ·

which is “long exact”, meaning that at each stage, we have “kernel = image”: if we
focus at any three term piece

A B C
f g

we have ker g = Im f .

Line Bundles and Divisors

3. Line Bundles and Divisors

In the lecture, we saw the definition of Cartier divisors, and we defined line bundles
as equivalence classes of divisors up to rational equivalence,

Pic(X) = CDiv(X)/K∗(X)

With some cohomology under our belt, we are now in a position to give more intrinsic
definitions of Cartier divisors and line bundles.

Let us begin with Cartier divisors. Remember that our definition was that a Cartier
divisor on X was the data of

• An open cover U1, · · · , Un of X.
• A rational function fi on Ui.
• A compatibility condition on Uij :

fi
fj

= uij

2If you’ve studied topology, this idea may be familiar to you, from the long exact sequence associated
to the cohomology of a pair (X,A)
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for a unit uij ∈ O∗
X(Uij) (a nowhere vanishing regular function). Remember we had a

homomorphism to the group of Weil divisors by

(fi) → div(fi) =
∑

V codimension 1

ordV (fi)[V ]

– and the order did not depend on the choice of fi precisely because of the compatibility
on overlaps. How should we think of a Cartier divisor? There is two options.

Definition 3.1. Let X be a variety with fraction field KX . A fractional ideal I ⊂ KX

is a subsheaf
I ⊂ KX

such that for each g ∈ OX(U), and f ∈ I, we have

gf ∈ I

When should we consider two divisors (fi) and (f ′i) the same (for simplicity, let us
assume they are defined on the same open cover of X)? Simply, when the fi generate
the same fractional ideal – when

fi
f ′i

= ui

is a nowhere 0 regular function, or equivalently, when

div(fi) = div(f ′i)

This way, we see that we have for each i the data of an ideal

I(Ui) ⊂ K∗
X

defined by
I(Ui) = OX(Ui)fi

But the compatibility on Uij means that

I(Ui) = I(Uj)

and so we get all in all an ideal
I ⊂ K∗(X)

This ideal is locally principal: on Ui, it is generated by one element, namely fi. We
have thus arrived at

Definition 3.2 (1st definition). A Cartier divisor is a locally principal fractional ideal
I ⊂ K∗.

On the other hand, we have an alternative interpretation. The data of a Cartier
divisor is equivalent to

fi ∈ K∗(Ui)/O∗
X(Ui)

such that
fi
fj

= 0 ∈ K∗(Uij)/O∗
X(Uij)

In other words, an element of H0(K∗
X/O∗

X)! To sum up, we have proven

Theorem 3.3. We have

CDiv(X) = Fractional Ideals I ⊂ K∗
X = H0(K∗

X/O∗
X)
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4. Line Bundles

We can now move on to line bundles.

Definition 4.1. Let X be a variety. A line bundle L is a locally free sheaf of rank 1
on X.

We must now unpack this definition. A sheaf is free of rank 1 if it is isomorphic to
the structure sheaf OX .

Exercise 4.2. Show that
Iso(OX ,OX) = O∗

X(X)

To say that a line bundle is locally free means that we have an open cover X =
U1 ∪ · · · ∪ Un, and L is free on each Ui, L|Ui

∼= OUi .
How can such an object be different from OX? After all, on each Ui we have an

isomorphism
ϕi : OX |Ui → L|Ui

The point is that the isomorphisms may not be the same on Uij . More precisely, if we
restrict ϕi and ϕj to Uij = Ui ∩ Uj , their “difference”

OX |Uij = (OX |Ui)|Uij L|Uij (OX |Uj )|Uij = OX |Uij

ϕi|Uij
ϕ−1
j |Uij

may not be the identity. By the exercise, the isomorphism

ϕ−1
j ϕi|Uij

corresponds to a unique unit
uij ∈ O∗

X(Uij)

Note that our units uij are not random. On Uijk we have

ϕ−1
j ϕiϕ

−1
i ϕkϕ

−1
k ϕj = 1

or, put otherwise,
uiju

−1
ik ujk = 1

In other words, our line bundle is determined by an element (uij)i<j in the kernel⊕
i<j

O∗
X(Uij) →

⊕
i<j<k

O∗
X(Uijk)

When should we consider two line bundles the same? A little bit of thought will convince
you that we should do so if we have isomorphisms

ψi : L|Ui → L′|Ui

such that
ψi = ψj

on Uij . But we already have isomorphisms

ϕi : OX |Ui → L|Ui

and
ϕ′i : OX |Ui → L′|Ui
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and thus

(ϕ′i)
−1 ◦ ψi ◦ ϕi

is an isomorphism

OX |Ui → OX |Ui

In other words,
ϕi
ϕ′i

= uiψ
−1
i

By the exercise, this is a unit ui ∈ O∗
X(Ui). In that case, the elements

uij = ϕ−1
j ϕi

and

u′ij = (ϕ′j)
−1ϕ′i

satisfy

uij
u′ij

=
ϕ−1
j ϕi

(ϕ′j)
−1ϕ′i

=
ui
uj

Thus, isomorphic line bundles are exactly those for which the data uij differs by the
image of ⊕

i

O∗
X(Ui) →

⊕
i<j

O∗
X(Uij)

Putting everything together, we see that the line bundles on X up to isomorphism are
the kernel modulo the image in⊕

iO∗
X(Ui)

⊕
i<j O∗

X(Uij)
⊕

i<j<k O∗
X(Uijk)

d1

We have found

Theorem 4.3.

Pic(X) = Line Bundles on X/Isomorphism = H1(X,O∗
X)

5. Divisors to Line Bundles

In class, we defined

Pic(X) = CDiv/K∗
X

We have now seen also an interpretation

CDiv(X) = H0(X,K∗
X)

and

Pic(X) = H1(X,O∗
X)

So how is this consistent with our definition? Simply the data of a divisor (fi) ∈⊕
iK∗

X(Ui) maps to the element

uij =
fi
fj

∈ O∗
X(Uij)

This shows that there is a map

CDiv → Pic
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It is actually not so hard to see that the map has kernel K∗(X). What is harder to see
is that the map is surjective. For this, we employ the long exact sequence technique.
We have a short exact sequence

0 → O∗
X → K∗

X → K∗
X/O∗

X → 0

The long exact sequence gives

0 → H0(X,O∗
X) → H0(X,K∗

X) → H0(X,K∗
X/O∗

X) → H1(X,O∗
X) → H1(X,K∗

X)

Exercise 5.1. Let X be an algebraic variety, and F be the constant sheaf with values
G. Show that

H0(X,F ) = G,H i(X,F ) = 0

for i > 0.

Applying this exercise to the constant sheaf K∗
X , we get

H0(X,K∗
X/O∗

X)/K∗
X = H1(X,O∗

X)

i.e. our isomorphism
Pic(X) = CDiv/K∗

X

from class. A common notation for the line bundle corresponding to a divisor D is

OX(D) = {f ∈ KX |divf ≥ D}
If D =

∑
aiVi, this means that OX(D) is the line bundle corresponding to the fractional

ideal of rational functions which have at worse a pole of order ai at Vi, no other poles.

Example 5.2. Let X = P1, p = [0, 1]. Let z be the coordinate in the chart {[x0 : x1] :
x1 ̸= 0}. Then

OX(np) = OX · 1

zn

is the line bundle corresponding to the fractional ideal of functions with a pole of order
at worst n at p.

Example 5.3. Let p = [0, 1] be as above, and q another point of P1. Show that

np ̸= nq

as Cartier divisors, but
OX(np) ∼= OX(nq)

as line bundles.

Exercise 5.4. Let X = P1, and U0, U1 the standard open cover xi ̸= 0. Let p be the
point [0, 1]. Compute the element of

H1(X,O∗
X)

corresponding to the fractional ideal O(p).
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