
 Projective Embeddings of
Toric Varieties

Recall from previous talks that
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Now if D Ʃ a D then men diram D is
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We now want to ask 2 questions

When is O D generated by its
sections

i e when is Ho X OCD sit for each
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is nonzero
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Clearing h map is only well defined
when OCD is generated by sections
otherwise we would be mapping points to 0



Note that if Δ is not complete then Pp
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Def Convexity A real valued function 4 on a vector

space is convex if
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ProfAssume all maximal cones in Δ are n dim Let
D be a Cartier divisor on D Then OCD
is generated by sections iff Xp is convex

Proof OCD being generated by sections is

equivalent to requiring the existence of a
a EM
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i tells us that Ula E Pp S Pp determines

global sections

i tells us that generates OCD on

Now is defined as the pielewise linear
function whose restriction to each cone has
the value in Iii The fact that 4 is convex

means it fulfils 4 S here is part of
P S determines a global section
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where r Ppnm
This

map is well defined as long as 4 is

convex Then OCD is generated by global
section so we ran choose a basis
When is this map an embedding
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we reduce to the affine case



Now I restricted to an open U er is

simply X But these U um generate
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Consider the Hirzebruch surface
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Let's try and see this explicitly in coordinates
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We have an issue at v s a say The adf.int

v 1,2 is mapped to 1 0 1 but the
special points on a say go to 0 0 1
This ian't happen since the orbit closure of

V is P
and is mapped to a O 6 in P while missing
I O o Sine maps from Pl are either const or surf
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In summary

Given a tori variety A and a divisor

D we can define a PL function Yp

If is convex then there is a well def

map Pr

If is strictly convex then this map
is an embedding


