Projective Embeddings of Torii Varieties
Recall from previous talks that
T-Cartier Divisors \simeq Piecewise linear functions on a boric variety on the cones.

Let $D=\{u(\alpha) \in M / M(\sigma)\}$ be a Cartier divisor of $X(\Delta)$. It defines a piecewise linear function on the support of the fan $|D|$ whose restriction to each cone α is given by $u(\alpha)$, i.e.

$$
\psi_{D}(v)=\langle u(\omega), v\rangle \quad \forall v \in \sigma .
$$

If $D=\sum a_{i} D_{i}$, then ψ_{D} is given by

$$
\psi_{D}\left(v_{i}\right)=-a_{i} .
$$

Recall that the global sections of $O(D)$ are given b y

$$
\begin{aligned}
& H^{0}(X, O(D))=\underset{\operatorname{div}\left(x^{m}\right)_{2-D}}{\mathbb{C}} \cdot X^{m}, m \in M . \\
& \operatorname{div}\left(x^{m}\right)_{2-D}=\oplus_{m \in P_{D} \cap M} C \cdot X^{m} .
\end{aligned}
$$

Now if $D=\sum a_{i} D_{i}$, then $\left.M \in M, \operatorname{div}\left(x^{M}\right) \geqslant-1\right)$ is

$$
\left\langle m, u_{i}\right\rangle \geqslant a_{i} \quad \forall \quad i
$$

These are just hyper planes, so we have a polytope

$$
\begin{aligned}
P_{D} & =\left\{u \in M \mid\left\langle u, v_{i}\right\rangle \geqslant-a_{i} \quad \forall i\right\} \\
& =\left\{u \in M \mid u \geqslant \psi_{D} \quad \text { on }|\Delta|\right\} .
\end{aligned}
$$

We now want to ask 2 questions:
(1) When is $O(D)$ generated by its sections,? ie. when is $H_{0}(X, O(D))$).t for each point on X at least one global section is nonzero.
(2) When is the map

$$
\begin{aligned}
& \Psi: X(\Delta) \rightarrow \mathbb{P}^{r-1} \\
& \text { embedding? } x \mapsto\left(X^{u_{1}}(x), \ldots, X^{u_{r}}(x)\right) .
\end{aligned}
$$

Clearly theadin?? map is only well-detined when $O(D)$ is generated by sections (otherwise we would be mapping paints to 0).

Note that if Δ is not complete, then P_{D} may not even be bounded. Consider

The Wail divisors are the codim 1 subvarieties, given by the 3 rays.
Consider the divisor

$$
D=D_{1}+D_{2}+D_{3} .
$$

Then, $u \in P_{D} \stackrel{1}{\rightleftharpoons}$

$$
\begin{aligned}
& \left\langle u_{1} e_{1}\right\rangle \geqslant-1 \Leftrightarrow x \geqslant-1 \\
& \left\langle u_{1} e_{2}\right\rangle \geqslant-1 \Leftrightarrow y \geqslant-1 \\
& \left\langle u, e_{1}+e_{2}\right\rangle \geqslant-1 \Leftrightarrow x+y \geqslant-1
\end{aligned}
$$

$0 \cap a=1$
$(1,0)$
If $a=1$, we cant even define
$u\left(\sigma_{4}\right)$, since we would $u\left(\sigma_{4}\right)$, since we wald reed $-x+2 y=-1 \quad$ carnot have bodice colds.
$\left\langle u, v_{1}\right\rangle \geqslant-a \Leftrightarrow \quad 2 y-x \geqslant-a \Leftrightarrow y \geqslant \frac{x}{2}-\frac{a}{2}$
$\left\langle u, v_{2}\right\rangle \geqslant-1 \Leftrightarrow y \geqslant-1$
$\left\langle u, v_{3}\right\rangle \geqslant 0 \quad \Leftrightarrow \quad x \geqslant 0$
$\left\langle u, v_{4}\right\rangle \geqslant 0 \Leftrightarrow-y \geqslant 0 \Leftrightarrow y \leqslant 0$.

Def (Convexity). A real valued function ψ on a vector space is convex if

$$
\psi(t \cdot v+(1-t) w) \geqslant t \psi(v)+(1-t) \psi(w)
$$

Example. Consider the tori variety corresponding to \mathbb{P}^{\prime}, i.e.

$$
\begin{aligned}
& D=a_{1} D_{1}+a_{2} D_{2}, \text { then } \\
& \psi_{D}(x)= \begin{cases}-a_{1} x & x \geqslant 0 \\
-a_{2} x & x \leqslant 0\end{cases}
\end{aligned}
$$

ψ_{D} is convex iff $a_{1}+a_{2} \geqslant 0$.

Prop Assume all maximal cones in Δ are n-dim. Let D be a Cartier divisor on $X(\Delta)$. Then $O(D)$ is generated by sections iff ψ_{D} is convex

Proof. (OCD) being generated by sections is equivalent to requiring the existence of $u(\omega) \in M$ \forall cones o st

$$
\begin{aligned}
& (i)\left\langle u(\sigma), v_{i}\right\rangle \geqslant-a_{i} \quad \forall i \\
& (i i)\left\langle u(d), v_{i}\right\rangle=-a_{i} \quad \forall v_{i} \in \sigma .
\end{aligned}
$$

(i) tells us that $u(\omega) \in P_{D} \cdot \&^{1} P_{D}$ determines global sections
(ii) tells us that $x^{u(\alpha)}$ generates $O(D)$ on U_{\downarrow}.

Now ψ_{D} is defined as the piecewise linear function whose restriction to each cone has the value in (ii). The fact that ψ_{D} is convex, means it fulfils (i) \& hence is part of $P_{D} \&$ determines a global section.

Define

$$
\Psi_{D}: X(D) \rightarrow \mathbb{P}_{u}^{r-1}
$$

where $r=\left|P_{D} \cap M\right|$.

$$
x \longmapsto\left(x^{u_{1}}(x): \ldots x^{u_{r}}(x)\right)
$$

This map is well-defined as long as ψ_{D} is convex. Then $O(D)$ is generated by global sections so we can choose a basis. When is this map an embedding?
Lemma If $|\Delta|=I M_{R}$, the mapping Ψ_{D} is an embedding iff ψ is strictly convex \mathcal{B} $S_{\sigma} \underset{\substack{\text { generated } \\ \text { by }}}{ }\left\{u-u(0): u \in P_{D} \cap M\right\} \forall s$.
Proof sketch: " $\Leftarrow " \psi_{D}$ convex means the map $\Psi_{D}: X(\Delta) \rightarrow \mathbb{D}^{1-1}$ is well defined. Let α be a $n-d i m$ cone $\Delta u(\alpha) \in P_{D}^{M}$ the correplading function. ψ_{D} laver $\Rightarrow O_{D}$ is generated by $u(a)$ on U_{σ}. The fact that ψ_{D} is strictly convex, yields that the inverse image by $\Psi_{D} \geqslant \mathbb{C}^{r-1} \subseteq \mathbb{P}^{r-1}$ where $u(\sigma) \neq 0$ is precisely U_{σ}. ie. we reduce to the affine case.

Now Ψ_{D} restricted to an open $u_{\alpha} \rightarrow C^{r-1}$ is Simply $\chi^{u-u(a) . ~ B u t ~ t h e s e ~} u-u(\sigma)$ generate $S_{r,}$, so the ring map is surfective implying embedding.

Consider the Hirzefruch surface.

Consider $D=D_{4}, \quad D^{\prime}=D_{2}+D_{4}$.
$\left.u \in P_{D}: \quad 2 u_{1} e_{2}\right\rangle \geqslant 0 \Leftrightarrow y \geq 0$

$$
\begin{aligned}
& \left\langle u_{1} 2 e_{2}-e_{1}\right\rangle \geqslant 0 \Leftrightarrow 2 x-y \geqslant 0 \\
& \left\langle u_{1}-e_{2}\right\rangle \geqslant-1 \Leftrightarrow-y \geqslant-1 \Leftrightarrow y \leqslant 1 \\
& \left\langle u, e_{1}\right\rangle \geqslant 0 \Leftrightarrow x \geqslant 0 .
\end{aligned}
$$

$\leadsto \bigcup_{\text {by sections }}^{(O(D))_{\text {is }} \text { generated }}$

$$
\begin{aligned}
u \in P_{D}^{\prime}: & \left\langle u, e_{2}\right\rangle \geqslant-1 \Leftrightarrow y \geqslant-1 \\
& \left\langle u, 2 e_{2}-e_{1}\right\rangle \geqslant 0 \Leftrightarrow 2 y-x \geqslant 0 \Leftrightarrow y \geqslant x / 2 \\
& \left\langle u,-e_{2}\right\rangle \geqslant-1 \Leftrightarrow-y \geqslant-1 \Leftrightarrow y \leq 1 \\
& \left\langle u, e_{1}\right\rangle \geqslant 0 \Leftrightarrow x \geqslant 0 .
\end{aligned}
$$

Let's try and see this explicitly in coordinates:

$$
\begin{aligned}
\mathcal{L}_{D}: X(\Delta) & \mathbb{P}^{2} \\
x & \left(1: x^{e_{2}^{4}}: X^{e_{2}^{4}+2 e_{1}^{4}}\right) \\
& \left(1: Y(x): X^{2} Y(x)\right)
\end{aligned}
$$

We have an issue at $V, \gg D_{3} \Delta \sigma_{y}$. The spray point $v_{1}=(-1,2)$ is mapped to $(1: 0: 1)$ but the special points on $\sigma_{3}>\sigma_{1}$ go to (0:0:1). This cant happen, since the orbit closure of V_{1} is p^{1}, and is mapped to $[a: 0: b]$ in \mathbb{P}^{2} while Missing ' $[1: 0: 0]$. ${ }_{y}$ since maps from \mathbb{P} are either cont. or surety.

Special point of V, is the limit of the 1-para subgroup $(-1,2)$, i.e.

$$
\lim _{t \rightarrow 0}\left(1, t^{2}, 1\right)=[1: 0: 1]
$$

Sp. pt. of 0_{3} : limit of 1 -publora $(-1,1)$.

$$
\lim _{t \rightarrow 0}\left(1, t, t^{-1}\right)=[0: 0: 1]
$$

Sp. pt. of σ_{1} is the limit of $(-1,0)$

$$
\lim _{t \rightarrow 0}\left(1,1, t^{-2}\right)=[0: 0: 1]^{6}
$$

In summary:
Given a torii variety $X(\Delta)$ and a divisor D, we can define a $P L$ function ψ_{D}.

If T_{y} is convex, then there is a well def. $\operatorname{map} \quad x \longrightarrow \mathbb{P}^{r}$.

If ψ_{D} is strictly convex then this map is an embedding.

