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1 Cohomology of Flasque Sheaves

Definition 1.1. A sheaf is said to be flasque if the restriction maps are surjective. We will use the following lemma
about flasque sheaves.

Lemma 1.1. If F is a flasque sheaf then Hi(X,F) = 0 for i > 0.

Proof. See section 20.12 of the stacks project.

One important class of flasque sheaves are the constant sheaves on an irreducible topological space. We define
constant sheaves in general:

Definition 1.2. Let A be a ring and X a topological space. We will endow A with the discrete topology. The
constant sheaf A on X is define by: A(U) = {f : U → A, f is a continuous function}

Lemma 1.2. The constant sheaf on an irreducible topological space is flasque.

Proof. Let f be a continuous function from U to A. The image of f is the singleton because otherwise the preimage
of two distinct points in the image would yield two nonempty open subsets that do not intersect. All non-empty
open sets have nonempty intersection on an irreducible topological space.

The above lemma shows us that for an irredicuble topological space we may just let A(U) = A with the restriction
maps being the identity.

Another example of a flasque sheaf we will talk about is the skycraper sheaf.

Definition 1.3. Let X be an affine scheme. Fixed a closed point x ∈ X and fix a set A (group, ring, etc). We define
the skycraper sheaf on X by Ax(U) = A if x ∈ U and 0 otherwise.

Lemma 1.3. Let us consider the skyscraper sheaf over a point in P1 with values in the complex numbers. We claim
that H1(P1,Cp) = 0.

Proof. Let us take p = [0, 1]. We may cover P1 with the affine opens D(x0)∩D(x1). The map on complexes is then:
Cp(D(x0)) = C and Cp(D(x1)) = 0. We thus have that: C1(U) = C⊕ 0 → C2(U) = 0 this implies that the first and
higher cohomology groups vanish.

2 Cohomology of Line Bundles on Projective Space

Definition 2.1. We define the line bundle sheaf on P1 by

O(n)(U) = {g/f : f ∈ k[x0, · · · , xn]e, g ∈ K[x0, · · · , xn]e+n, f(p) ̸= 0 ∀p ∈ U}

We have the following facts:

1. Hq(P1,O(n)) = 0 if q ̸= 0, 1.

2. H0(P1,O(n)) = O(n)(Pn).

3. H1(P1,O(n)) = 1
x0x1

C[1/x0, 1/x1]n
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Proof. A direct computation is easiest. We pick the affine cover U = {D+(x0), D+(x1)}. We observe that the i ≥ 1
cohomology has to vanish. We also observe that the zeroth cohomology group is is just the global sections and in this
case the global sections of O(n) are just the homogenous polynomials of degree n. So what we need to compute is
the first cohomology group. Consider the sheaf F =

⊕
n∈N O(n). It is a fact that for Noetherian schemes cohomology

commutes with taking direct sums. We will compute the cohomology for this sheaf and track the grading.

Proof. The zeroeth cohomology group has to be the global sections of the sheaf. This is a general fact for any sheaf
F and cover U , and follows because C0 =

∏
O(Ui) the dij((s)i) = sij − sji = 0 =⇒ sij = sji on intersections. By

the glueing and uniqueness axioms, this corresponds to a global section.

We only need to figure out the first cohomology Hi(U ,F), because the higher cohomology groups have to vanish.

In this case note that F(D(x0)) = C[x0, x1]x0 = C[x±1
0 , x1]. Likewise, F(D(x1)) = C[x0, x

±1
1 ]. We have also have

F(D(x0x1) = C[x±1
0 , x±1

1 ]

It is easy to see that C[x±1
0 , x±1

1 ]/im(d) is just the quotient of two sets A = {xk0
0 xk1

1 : ki ∈ Z} and B = {xm0
0 xm1

1 :
m0 ≥ 0 orm1 ≥ 0}. We may thus identify the quotient of A/B with the set of all monomial xm0

0 xm1
1 with both

m0 ≤ 0 and m1 ≤ 0. Thus we have that

H1(X,F) =
1

x0x1
C[x−1

0 , x−1
1 ]

By tracking the grading we recover the fact that:

O(n) =
1

x0x1
C[x−1

0 , x−1
1 ]n

3 Cartier Divisors and the Sheaf of Regular Functions

Fix for now an integral scheme. For an irreducible scheme the sheaf of meromorphic regular functions is the constant
sheaf K(X). We have the following exact sequence of sheaves:

0 → O∗
X → K∗ → K∗/O∗

X → 0.

By the long exact sequence of cohomology we have the following long exact sequence:

0 → O∗
X(X) → K∗(X) → K∗/O∗

X(X) → H1(X,O∗
X) → 0 = H1(X,K∗) → H1(X,K∗/O∗

X).

Here we are using the fact that H1(X,K∗) = 0 since this sheaf is flasque. From this exact sequence we have that
Pic(X) = CDiv/K∗(X) ∼= H1(X,O∗

X).

In order to get a more in depth and hands on understanding of the relationship between Cartier divisiors and the
picard group. We recall the following:

Definition 3.1. The picard group is the group of isomorphsim of classes of rank 1 OX modules. It is a group under
the operation L1 ⊗ L2.

Definition 3.2. We denote the group H0(X,K∗/O∗
X) to be the set of cartier divisors denoted Div(X).

If f ∈ H0(X,K∗
X) then its image in Div(X) is said to be a principal divisor. Two cartier divisors are said to be

equivalent if their difference is a principal divisor.

We can represent a cartier divisor D by a system (Ui, fi) where the Ui cover X and fi is the quotient of two regular
elements of OX(Ui) and fi|Ui∩Uj = fj |Ui∩Uj =⇒ fi|Ui∩Uj ∈ fj |Ui∩UjO(Ui ∩ Uj)

∗.
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So if we have two cartier divisors represented by D1 = {(Ui, fi)i} and D2 = {(Vj , gj)j} their product which we de-
note addively as D1+D2 is represented by {(Ui∩Vj , figj)i,j}.We will consider cartier divisors upto linear equivalence.

Given a cartier divisor we can construct a locally invertible sheaf OX(D) ⊆ KX defined by the system OX(D)|Ui
=

f−1
i O|Ui

. Note that D ≥ 0 ⇐⇒ O(−D) ⊆ X. 1

1We say that D ≥ 0 it can be represented by a system of {(Ui, fi)i} with fi ∈ OX(Ui).
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