Smoothness of Toric Varieties

Jan Höhener

October 15, 2023

Abstract

This paper presents the notes for the seminar in "Toric Geometry" of the 17.10.2023. We will discuss smoothness of Toric Varieties.

1 Smoothness of General Varieties

At first, lets start with a short repetition of relevant definitions.
Definition 1.1. Let $X=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{n}\right)$ be a variety over the field $\mathbb{K}, x \in X$. The tangent space $T_{X, x}$ is given by

$$
T_{X, x}=\{\text { Derivations } D: X \rightarrow \text { Kat } x\}
$$

where Derivations are \mathbb{C}-linear maps that satisfy the Leibnitz rule.
Theorem 1.2.

$$
T_{X, x} \simeq \operatorname{Hom}\left(m / m^{2}, \mathbb{K}\right)
$$

with $m=\{g \mid g(x)=0\} \subset X$ being the maximal ideal at this point.
Proof. The isomorphism is given by

$$
D \mapsto \phi_{D}(f)=D(f)
$$

with its inverse

$$
\phi \mapsto D_{\phi}(f)=\phi(f-f(x))
$$

Hence, $\left(\mathrm{m} / \mathrm{m}^{2}\right)^{v} \simeq T_{X, x}$ and we can define the following:
Definition 1.3. The Zariski-cotangent space $\Omega_{X, x}^{Z a r}$ at the point x is given by

$$
\Omega_{X, x}^{Z a r}=m / m^{2}
$$

Now, we can continue with the definition of smoothness.
Definition 1.4. Let X be a variety, $x \in X . X$ is smooth at x if

$$
\operatorname{dim}\left(\Omega_{X, x}^{Z a r}\right)=\operatorname{dim}(X)
$$

There exists a useful and well-known criterion that helps us the determine whether a variety is smooth at a point x or not.

Proposition 1.5. Let $X=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{n}\right)$ be a variety. X is smooth at a point $x \in X$ if

$$
\operatorname{rank}\left(\frac{\delta f_{i}}{\delta x_{j}}(x)\right)=n-\operatorname{dim}(X)
$$

Differently said, the Jacobian has to have maximal rank.

Proof. Let n be the ideal of x in \mathbb{A}^{n}. Write $I=\left(f_{1}, \ldots, f_{n}\right)$ for the ideal of X. Taking the quotient $\operatorname{map} k\left[x_{1}, \ldots, x_{n}\right] \rightarrow I$, we see there is a map

$$
n / n^{2} \rightarrow m / m^{2}
$$

i.e. a map $\Omega_{\mathbb{A}^{n}, x}^{Z} \rightarrow \Omega_{X, x}^{Z}$. It is easy to see that $\Omega_{\mathbb{A}^{n}, x}^{Z}$ is n -dimensional, generated by the functions $x_{i}-a_{i}$, where $x=\left(a_{1}, \ldots, a_{n}\right)$. These correspond to the Kahler differentials $d x_{i}$. We have

$$
m / m^{2}=(n / I) /\left(n^{2}+I / I\right)=n /\left(n^{2}+I\right)
$$

and so the kernel of the map $n / n^{2} \rightarrow m / m^{2}$ is precisely I. Under our isomorphism above, an element $f_{i} \in I \subset N$ goes to the element

$$
d f_{i}
$$

Observe, that by Taylor's expansion it holds that

$$
d f_{i}=\sum \frac{\delta f_{i}}{\delta x_{j}}(x) d x_{j}
$$

Thus, we see that $\Omega_{X, x}^{Z}$ is k-dimensional if and only if the space generated by the $d f_{i}$ has dimension $n-k$. This is exactly the rank of the Jacobian.

Example 1.6. Consider the variety $X=\mathbb{K}[x, y, z] /\left(x z=y^{2}\right)$. The Jacobian is given by $\left(\begin{array}{lll}z & -2 y & x\end{array}\right)$, so the Jacobian has maximal rank if and only if $(x, y, z) \neq 0$. Remark that the corresponding fan has the rays $(1,0),(1,2)$.

2 Smoothness of Toric Varieties

In case of Toric Varieties, there exists a theorem that connects the smoothness of $X(\sigma, N)=\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)$ to a property of the cone σ. But first, we continue with a useful proposition.

Proposition 2.1. If $\sigma \subset N_{\mathbb{R}}$ and $\operatorname{span}(\sigma) \subsetneq N_{\mathbb{R}}$ Then there exist two lattices $N_{1}, N_{2} \subset N$, such that

$$
N=N^{\prime} \oplus N^{\prime \prime}
$$

with $N^{\prime}=\operatorname{span}(\sigma) \cap N$. This implies that

$$
X(\sigma, N)=X\left(\sigma, N^{\prime}\right) \times T_{N^{\prime \prime}}
$$

Proof. Note that N / N_{1} is torsions-free. By the classification theorem for free modules over PID's N / N_{1} is free. Let $B \subset N$ denote the elements that map to a basis of N / N_{1} under the projection. We set $N_{2}=\{\mathbb{Z}$ - linear combinations in $B\}$.
We condlude by noting that $N_{1} \times N_{2} \rightarrow N,\left(n_{1}, n_{2}\right) \mapsto n_{1}+n_{2}$ is bijective. It has trivial kernel since $n_{1}+n_{2}=0$ implies $n_{2} \in N_{1}$, so by arguing via the basis, $n_{2}=0$, so n_{1} is also 0 . If $y \in N$, then again arguing via B, there in $n_{2} \in N_{2}$ with $y-n_{2} \in N_{1}$, from which bijectivity follows.
Remark, that the implication for the varieties follows from the duality between sums of algebras and Products of their varieties. Further note, if $N^{v}=M$, then

$$
\operatorname{Spec}(\mathbb{C}[M])=T_{N}
$$

Remark 2.2. Note, that if $X(\sigma, N)=X\left(\sigma, N^{\prime}\right) \times T_{N^{\prime \prime}}$ holds, then $X(\sigma, N)$ is smooth if and only if $X\left(\sigma, N^{\prime}\right)$ is smooth.

Definition 2.3. A cone $\sigma \subset N$ is full dimensional if $\operatorname{Span}(\sigma)=N$
Note, that this proposition allows us the following: If we want to show smoothness of a toric variety $X(\sigma, N)$, then we can assume that σ is full dimensional.
If this would not be the case, one can set $N^{\prime}=\operatorname{span}(\sigma) \cap N$. Then prove that $X\left(\sigma, N^{\prime}\right)$ is smooth which is by the proposition equivalent that $X(\sigma, N)$ is smooth.

Now, we can state the main theorem of todays lesson:

Theorem 2.4. A toric variety $X(\sigma, N)=\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)$ is smooth if and only if σ is generated by a part of a basis for N.

Proof. Let $n=\operatorname{dim} X$. Note, we now can assume that σ is full dimensional, so σ is generated by $\left(e_{1}, \ldots, e_{n}\right)$.
In this case, the toric action has a unique fixed point x_{σ} which is the maximal ideal $m=\left\langle\chi^{m}\right| m \in$ $\left.S_{\sigma} \backslash\{0\}\right\rangle \subset \mathbb{C}\left[S_{\sigma}\right]$. Observe that $m^{2}=\left\langle\chi^{w} \mid w=u+v, u \neq 0, v \neq 0\right\rangle$.
Define $B=\left\{\sum_{i=1}^{n} a_{i} e_{i}^{*} \mid a_{i} \in[0,1]\right\} \subset \sigma^{v} \cap M$
Remember, X is smooth at x_{σ} if

$$
\operatorname{dim}\left(\Omega_{X, x_{\sigma}}^{Z a r}\right):=\operatorname{dim}\left(m / m^{2}\right)=\operatorname{dim}(X)
$$

Now, one can argue that if $u \notin B \subset M$, then $\chi^{u} \in m^{2}$, because then $u=\sum u_{i}$ for some $u_{i} \in B$. This means that m / m^{2} only contains the elements in B.
As σ is full dimensional, B already contains at least the n generators $e_{1}^{*}, \ldots, e_{n}^{*}$.
Hence, smoothness of X at x_{σ} is equivalent to B containing no other points that the n generators which is equivalent to that $\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)$ is part of a basis for M which is equivalent to that $\left(e_{1}, \ldots, e_{n}\right)$ is part of a basis for N.

Remark 2.5. Be aware that being a basis of N is a stronger statement that being a basis for $N_{\mathbb{R}}$. Consider for example the cone generated by $(1,0),(1,2)$. This is a basis for $N_{\mathbb{R}}$ but not for N, because you can consider

$$
(1,1)=\frac{1}{2}(1,0)+\frac{1}{2}(1,2)
$$

Remark 2.6. Be aware that this has a very geometric intuition.
Remark 2.7. To check whether a cone σ is part of a basis there exists a handy criterion. Any basis is equivalent to any other basis by a matrix, which is invertible. Hence, we can start with the standard basis and interpret $A=\left(v_{1}, \ldots, v_{n}\right)$ as this matrix.
If this matrix A is invertible, then $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of $N_{\mathbb{R}}$. To be a basis for N, we have the stronger condition

$$
\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)= \pm 1
$$

as ± 1 are the only units in \mathbb{Z}.
Example 2.8. Consider $X=\operatorname{Spec}\left(\mathbb{K}[x, y, z] /\left(x z=y^{2}\right)\right.$ from above. The fan of it is given by the single cone with generators $(1,0),(1,2)$. We have seen above that these are no basis which implies by the theorem that X is not smooth which is exactly what we figured out before.

Example 2.9. If a cone is generated by only one element, then the corresponding variety always is smooth.

Example 2.10. For every non-simplicial cone $\sigma \subset N$ the toric variety $X(\sigma, N)$ is singular. The reason is that non-simplicial cones have more generators than the dimension of N.

References

[Cox10] David Cox. Toric Varieties. 2010.
[Ful93] William Fulton. Introduction to Toric Varieties. 1993.

