NONSINGULAR VARIETIES

Let $X=\operatorname{Spec} A=k\left[x_{1}, \cdots, x_{n}\right] /\left(f_{1}, \cdots, f_{m}\right)$ be an affine variety. In other words, X is the set of points

$$
\left\{\left(x_{1}, \cdots, x_{n}\right): f_{i}\left(x_{1}, \cdots, x_{n}\right)=0, i=1, \cdots, m\right\}
$$

We will work around a point $x \in X$. We will write m for the maximal ideal of functions $f \in A$ such that $f(x)=0$.

Recall from differential geometry:
Definition 1. A derivation $D: A \rightarrow \mathbb{C}$ at x is a \mathbb{C}-linear map D that satisfies the Leibniz rule:

$$
D(f g)=f(x) D(g)+g(x) D(f)
$$

The tangent space $T_{X, x}$ of X at x is the set of all derivations $A \rightarrow \mathbb{C}$ at x.
Definition 2. The cotangent space $\Omega_{X, x}$ at x is the vector space generated by elements $d f, f \in A$, with the relations

$$
\begin{array}{r}
d(c f)=c d(f) \text { for all constants } c \\
d(f+g)=d(f)+d(g) \\
d(f g)=f(x) d g+g(x) d f
\end{array}
$$

In other words,

$$
\Omega_{X, x}=\langle d f, f \in A\rangle / d(f g)=f(x) d g+g(x) d f
$$

Remark 0.1. We have $d(1)=0$ since $d(1)=d(1 \cdot 1)=1 d(1)+1 d(1)=2 d(1)$. Thus, for every constant c, we have $d(c)=c d(1)=0$. (This says, the derivative of a constant is 0).

Proposition 0.2. The tangent and cotangent space are dual vector spaces.
Proof. Let D be a derivation at x. We define a map $\Omega_{\mathrm{X}, \mathrm{x}} \rightarrow \mathbb{C}$ by $\mathrm{D}(\mathrm{df})=\mathrm{D}(\mathrm{f})$. We note that this is well defined, as $D(d(f g))=D(f g)=f(x) D(g)+g(x) D(f)$ and $D(f(x) d g+g(x) d f)$ is the same. So we get a map $T_{X, x} \rightarrow \operatorname{Hom}\left(\Omega_{X, x}, \mathbb{C}\right)$. We claim the map is injective. This is easy: if $D(d f)=0$ for all f , then $\mathrm{D}=0$. Conversely, suppose $\phi: \Omega_{X, x} \rightarrow \mathbb{C}$ is a homomorphism. We define a derivation by $D(f)=\phi(d f)$. Again, this is well defined since $D(f g)=\phi(d f g)=\phi(f(x) d g+g(x) d f)=$ $f(x) D(g)+g(x) D(g)$, and it is clear that ϕ is the image of D under the map defined above. So the map is also surjective, and so an isomorphism.

Definition 3. The Zariski cotangent space of X at x is the vector space

$$
\Omega_{X, x}^{\mathrm{Z}}:=\mathrm{m} / \mathrm{m}^{2}
$$

The Zariski tangent space at x is the dual

$$
\mathrm{T}_{X, x}^{\mathrm{Z}}:=\operatorname{Hom}\left(\Omega_{X, x}^{\mathrm{Z}}, \mathbb{C}\right)
$$

Proposition 0.3. The Zariski tangent space and the ordinary tangent space are isomorphic.

Proof. Let D be a derivation. We define a map $\psi_{D}: m / m^{2} \rightarrow \mathbb{C}$ by $\psi_{D}(f)=D(f)$. As before, this is well defined, because $f g \mapsto f(x) D(g)+g(x) D(f)$, and our $f, g \in m$, so $f(x)=g(x)=0$. Conversely, we define a map $\operatorname{Hom}\left(\mathrm{m} / \mathrm{m}^{2}, \mathbb{C}\right) \rightarrow \mathrm{T}_{\mathrm{X}, \mathrm{x}}$ by

$$
\phi \mapsto \mathrm{D}_{\phi}
$$

where $D_{\phi}(f)=\phi(f-f(x))^{1}$. This is a derivation by a standard trick: we have

$$
\begin{aligned}
D_{\phi}(f g) & =\phi(f g-f(x) g(x)) \\
& =\phi(f g-f g(x)+f g(x)-f(x) g(x)) \\
& =\phi(f(g-g(x))+g(x) \phi(f-f(x)) \\
& =\phi\left(f(g-g(x))+g(x) D_{\phi}(f)\right.
\end{aligned}
$$

and we must deal with $\phi(f(g-g(x))$. But once again, we have

$$
f(g-g(x))=(f-f(x))(g-g(x))+f(x)(g-g(x))
$$

and thus

$$
\phi(f(g-g(x))=\phi((f-f(x))(g-g(x)))+\phi(f(x)(g-g(x)))=0+f(x) \phi(g-g(x))
$$

since $(f-f(x))(g-g(x)) \in m^{2}$. Thus, we have shown that

$$
D_{\phi}(f g)=f(x) D_{\phi}(g)+g(x) D_{\phi}(f)
$$

i.e. D_{ϕ} is a derivation, as claimed. It is easy to see that $D_{\psi_{D}}=D$ and $\psi_{D_{\phi}}=\phi$, i.e. the two maps are inverses.
Corollary 0.4. We have $\Omega_{X, x}=\Omega_{X, x}^{Z}=m / m^{2}$.
Definition 4. Let $X=\operatorname{Spec} A \subset \mathbb{A}^{n}$ be a variety of dimension k. We say X is non-singular or smooth at x if $\Omega_{X, x}^{Z}$ is k-dimensional.
Definition 5. The Jacobian matrix $J(x)$ is the $\mathfrak{m} \times \mathfrak{n}$ matrix

$$
\left(\partial f_{i} / \partial x_{j}(x)\right)_{i j}
$$

Theorem 0.5. Let $X=\operatorname{Spec} \mathcal{A}=\operatorname{Spec} \mathbb{C}\left[x_{1}, \cdots, x_{n}\right] /\left(f_{1}, \cdots, f_{m}\right), x \in X$ as above. Suppose X is k -dimensional. Then X is non-singular at x if and only if $\mathrm{J}(\mathrm{x})$ has rank $\mathrm{n}-\mathrm{k}$.

Proof. Let n be the ideal of x in \mathbb{A}^{n}. Write $I=\left(f_{1}, \cdots, f_{m}\right)$ for the ideal of X. Taking the quotient map $k\left[x_{1}, \cdots, x_{n}\right] \rightarrow I$, we see that there is a map

$$
\mathrm{n} / \mathrm{n}^{2} \rightarrow \mathrm{~m} / \mathrm{m}^{2}
$$

i.e. a map $\Omega_{\mathbb{A}^{n}, \chi}^{Z} \rightarrow \Omega_{\chi, x}^{Z}$. It is easy to see that $\Omega_{\mathbb{A}^{n}, \chi}^{Z}$ is n-dimensional, generated by the functions $x_{i}-a_{i}$ where $x=\left(a_{1}, \cdots, a_{n}\right)$. These correspond to the Kahler differentials $d x_{i}$. We have

$$
\mathrm{m} / \mathrm{m}^{2}=(\mathrm{n} / \mathrm{I}) /\left(\mathrm{n}^{2}+\mathrm{I} / \mathrm{I}\right)=\mathrm{n} /\left(\mathrm{n}^{2}+\mathrm{I}\right)
$$

and so the kernel of the map $n / n^{2} \rightarrow m / m^{2}$ is precisely I. Under our isomorphism above, an element $f_{i} \in I \subset n$ goes to the element

$$
d f_{i}
$$

But now I claim that the simple expression you'd expect from calculus holds:

$$
d f_{i}=\sum \frac{\partial f_{i}}{\partial x_{j}}(x) d x_{j}
$$

[^0]Simply, by Taylor expansion, we have

$$
f_{i}\left(x_{1}, \cdots, x_{n}\right)=f_{i}(x)+\sum_{j=1}^{n} \frac{\partial f_{\mathfrak{i}}}{\partial x_{j}}(x)\left(x_{j}-a_{\mathfrak{j}}\right)+\text { terms of higher order in }\left(x_{j}-a_{\mathfrak{j}}\right)
$$

But $f_{i}(x)=0$ since the f_{i} by assumption vanish at x, and given a higher order term its differential will be divisible by some ($x_{j}-a_{j}$), so vanishes at χ. So the differential reduces to the expression claimed.

Thus, we see $\Omega_{\chi}^{Z},{ }_{\chi}$ is k-dimensional if and only if the space generated by the $d f_{i}$ has dimension $n-k$. This is exactly the rank of the Jacobian.

[^0]: ${ }^{1}$ note $\mathrm{f}-\mathrm{f}(\mathrm{x}) \in \mathrm{m}$

