Toric Geometry

Jan-Sebastian Höhener

November 28, 2023

Abstract

This paper are the notes for our seminar on the 28.11.2023. We will talk about differential forms on toric varieties.

1 Differential forms on smooth varieties

Let us start with some notation.

Definition 1.1 Let X be a smooth variety of dimension n. Denote the locally free sheaf of rank k on X as $\Omega_X^{\wedge k}$. Differently said, the sheaf of k-forms. Further, we set $\Omega_X := \Omega_X^{\wedge 1}$.

Remark 1.2 Assume that there is an open cover for $X = \bigcup_i U_i$. Then, we have that

$$\Omega_X|_{U_i} \simeq \mathcal{O}_{U_i}^n$$

with $\mathcal{O}_{U_i} = \{f : U_i \to \mathbb{C}\}\$ So if $z_1, ..., z_n$ are coordinates around a point $x \in X$, we have the localization

$$\Omega_{X,x} = \langle dz_1, ..., dz_n \rangle = \{ \sum f_i dz_i | f_i \in \mathcal{O}_{X,x} \}$$

Before we can start with a first example, another notation must be introduced.

Definition 1.3 We set $\mathcal{O}(D)$ as the functions with poles of order at worst of D. It is common to introduce a minus $\mathcal{O}(-D)$. In this case, we consider functions with zeros of minimal order D.

Remark 1.4 Note the difference between $\mathcal{O}(D)$ and \mathcal{O}_{U_i} .

Example 1.5 Let us consider \mathbb{P}^1 . We have seen that in this case

$$\Omega_X = \mathcal{O}(n)$$

This n can be computed via the following argument: Set

$$U_{1} = \{ \frac{x_{1}}{x_{0}} \mid [x_{0} : x_{1}] \in \mathbb{P}^{1}, x_{0} \neq 0 \} \simeq \mathbb{C}_{z}$$
$$U_{2} = \{ \frac{x_{0}}{x_{1}} \mid [x_{0} : x_{1}] \in \mathbb{P}^{1}, x_{1} \neq 0 \} \simeq \mathbb{C}_{w}$$

where $z = \frac{1}{w}$

Now, let us take the differential 1-form dz on U_1 and the differential 1-from f(w)dw on U_2 . Observe that

$$dz = \frac{-1}{w^2} dw$$

Now, if we want to get a well defined differential on \mathbb{P}^1 , we have to check, whether the two differentials coincide on $U_1 \cap U_2$. This is only possible, if the function f(w) is set to be $f(w) = \frac{-1}{w^2}$. This is a function with a pole of degree 2.

Interestingly, it can be shown that no matter how we choose our differential on U_1 , this function will have a pole of order 2. Therefore, we have showed that n = -2.

Now, we aim to understand $\Omega_X^{\wedge n}$ a little better. Let us consider with a proposition.

Proposition 1.6 Let X be smooth. Then there exists a divisor D:

$$\Omega_X^{\wedge n} = \mathcal{O}(D)$$

Proof 1.7 The basic idea is that $\Omega_X^{\wedge n}$ has rank 1 and must be a line bundle.

2 Differential forms on toric varieties

2.1 The locally free sheaf of differentials

In case of a toric variety, there exists a proposition that tells us what this divisor must be. But first a short reminder:

Remark 2.1 Let $X(\triangle)$ be a smooth toric variety. Denote the to $\rho_i \in \triangle(1)$ corresponding divisor as D_i . Then every divisor D on X can be written as

$$D = \sum_{\rho_i \in \triangle(1)} a_i D_i$$

with $a_i \in \mathbb{Z}$

Now, we come to the first core proposition of today's seminar.

Proposition 2.2 Let $X(\triangle)$ be a smooth toric variety. Then

$$\Omega_X^{\wedge n} = \mathcal{O}(-\sum_{\rho_i \in \triangle(1)} D_i)$$

Example 2.3 Consider \mathbb{P}^1 again. Then $\triangle(1) = \{1, -1\}$ We directly can compute:

$$\Omega_X^{\wedge n} = \Omega_X = \mathcal{O}(-D_1 - D_2) = \mathcal{O}(-[0] - [\infty]) \simeq \mathcal{O}(-2)$$

Example 2.4 Consider \mathbb{P}^2 . Then $\triangle(1) = \{(1,0), (0,1), (-1,-1)\}$. Then

$$\Omega_X^{\wedge n} = \mathcal{O}(-D_1 - D_2 - D_3) \simeq \mathcal{O}(-3)$$

Let us continue we the proof of the stated proposition.

Proof 2.5 Let $e_1, ..., e_n$ be the generators of the lattice N. Denote $X_i = \chi^{e_i^*}$ and define the rational section

$$\omega = \frac{dX_1}{X_1} \wedge \ldots \wedge \frac{dX_n}{X_n}$$

Observe, that another choice of basis for N gives the same differential form, up to multiplication by ± 1 . We must show that $div(\omega) = -\sum D_i$. On an open set U_{σ} , we may assume σ is generated by part of a basis, say e_1, \dots, e_k , so we have

$$U_{\sigma} = Spec(\mathbb{C}[X_1, ..., X_k, X_{k+1}, X_{k+1}^{-1}, ..., X_n, X_n^{-1}])$$

and

$$\omega = \frac{\pm 1}{X_1 \cdots X_n} dX_1 \wedge \ldots \wedge dX_n$$

This shows that $div(\omega)$ and $-\sum D_i$ have the same restriction to U_{σ} .

2.2 The locally free sheaf of differentials with logarithmic poles

Besides Ω_X there exists the free sheaf $\Omega_X(log D)$ of differentials with logarithmic poles along D. Interestingly, these are trivial on a toric variety.

Remark 2.6 At a point x in $D_1 \cap ... \cap D_k$ with x not in the other divisors, if $X_1, ..., X_n$ are local parameters such that $X_i = 0$ is a local equation for $D_i, 1 \le i \le k$, then

$$\frac{dX_1}{X_1}, \frac{dX_2}{X_2}, ..., \frac{dX_k}{X_k}, dX_{k+1}, ..., dX_n$$

give a basis for $\Omega_{X,x}(log D)$

Let us continue with a short introduction of an interesting map.

Remark 2.7 Consider the map

$$\Omega_X(logD) \to \bigoplus_{\rho \in \triangle(1)} \mathcal{O}_{D_i}$$
$$\omega = \sum_i f_i \frac{dX_i}{X_i} \mapsto \bigoplus f|_{D_i}$$

Example 2.8 Let $X = \mathbb{C}$. Then a divisor D is the sum of points. If you have a point p, then $\mathcal{O}_D = \mathcal{O}_p = f(p)$. So we would have the map

$$f\frac{dz}{z} \mapsto f(p)$$

which seems familiar from the residue theorem in complex analysis.

This map comes up in the second core proposition of today's talk.

Proposition 2.9 1. There exists an exact sequence of sheaves

$$0 \to \Omega_X \to \Omega_X(log D) \to \bigoplus_{i=1}^d \mathcal{O}_{D_i} \to 0,$$

2. $\Omega_X(log D) \simeq M \otimes \mathcal{O}_X$

Proof 2.10 To show the second point, consider the canonical map

$$M \otimes_{\mathbb{Z}} \mathcal{O}_X \to \Omega_X(logD)$$
$$(u, f) \mapsto f \sum a_i \frac{dX_i}{X_i}$$

with $u = \sum a_i e_i^*$ By the remark from above, one can see that this is indeed an isomorphism. For the first point, consider the residue map. It is zero precisely when each f_i is divisible by X_i , i.e, when ω is a section of Ω_X .