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Chow groups

Definition of Chow groups
Let   be a variety.

Define     .

We can define an equivalence relation on   as follows:

  if there exists   of dimension   and   such that 
 

With this equivalence relation we can define the Chow groups:

Definition - For a variety  , its Chow groups are  

Notice that in general,   is very difficult to understand

Basic Structures
Let   be an  -dimensional variety.

Fundamental class
To compute  , notice that there is no   of dimension  , hence 

 .
This is the free abelian group generated by the irreducible components of  . But  , 
is an  -dimensional variety, so   is the generator, ie.   is the fundamental 

class.

→  

Proper push-forward
Let   be a proper map

Then there is an induced map 

which is called the proper push-forward.

X

Z  (X)k Z  (X)k {V ⊂ X : V  is a k-dimensional subvariety}

Z  (X)k

V  ∼1 V  2 W ⊂ X k + 1 f ∈ K (W )∗

V  −1 V  =2 divf

X A  (X) =k Z  (X)/ ∼k

A  (X)k

X n

A  (X)n W ⊂ X n+ 1
A  (X) =n Z  (X)n

X X

n [X] 1 = [X]

A  (X) =n Z

f : X → Y

f  :∗ A  (X) →k A  (Y )k

[Z] ↦ [f(Z)]
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More precisely,

but for our purposes we can assume the induced map looks like the first map.

Excision
Let   be open, let  

Then we have an exact sequence 

Notice that for divisors, we had the exact sequence 
 , which exactly what we get here.

Main Theorem
Remember that on an arbitrary toric variety  , the Weil divisors generate the group 

 .
We want to generalise this to Chow groups   for  :

Theorem - The Chow group   of an arbitrary toric variety   is 
generated by the classes of the orbit closures   of the cones   of dimension 

  of  .

Proof

Define   as   
ie the union of the closed subvarieties corresponding to cones of dimension at 
least  . 

This gives the following chain of inclusions of subvarieties:
 

With theses definitions we have   
ie the disjoint union of orbits of cones of dimension  

Using the excision property we had above, this gives the exact sequence

[Z] ↦   {
deg(V /f(V )) ⋅ [f(Z)]
0

if  dim f(Z) = dimZ

otherwise

U ⊂ X Z = X − U

A  (Z) →k
j  ∗ A  (X) →k

i∗ A  (U) →k 0

A  (Z) →n−1 A  (X) →n−1

A  (U) →n−1 0

X

A  (X) =n−1 WDiv/K (X)∗

A  k k = n− 1

A  (X)k X = X(△)
V (σ) σ

n− k △

X  ⊂i X X  =i ∪  V (σ)σ:dim(σ)≥n−i

n− i

X = X ⊃n X  ⊃n−1 ⋯ ⊃ X  =−1 ∅

X  −i X  =i−1 ∪  O  σ:dim(σ)=n−i σ

n− i
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Now we have that for an  -torus  ,   for   and 

 

Using that   are tori combined with what we saw above, we get for  

Thus we can inductively show that 

  if  

  for  

Notice that the restriction from   to   maps  , 

Therefore the classes   for   generate   for  , 
hence generate  

Definition of Chow rings
From now on suppose   is non-singular.

Definition - The Chow ring for non-singular varieties is defined as follows: 
 .

Theorem -   is a ring.

These Chow rings have a ring structure attached to them:
Let   and  , then  .

Definition - If   are subspaces of  , then they intersect transversely if 
 

On a toric variety,   and   intersect transversely, unless  

If  ,   and   are transverse, then  .
If   are not transverse, then we have to shift them slightly to get   and 

  such that they are transverse and hence  

We now have a Chow group   which is a module over the Chow ring  .

A  (X  ) →k i−1 A  (X  ) →k i ⊕  A  (O  ) →dim σ=n−i k σ 0

n T A  (T ) =k 0 k = n A  (T ) =n Z ⋅
[T ]

O  σ k = i

A  (X  ) →k i−1 A  (X  ) →k i ⊕  Z ⋅dim σ=n−i [O  ] →σ 0

A  (X  ) =k i 0 k > i

A  (X  ) ≅k i ⊕  Z ⋅dim σ=n−i [O  ]σ k ≤ i

A  (X  )k i A  (O  )k σ [V (σ)] ↦ [O  ]σ

[V (σ)] dim(σ) = n− k A  (X  )k i k ≤ i

A  (X)k

X

A (X) :=k A  (X)n−k

A (X) =∗ ⊕A (X)k

x ∈ A (X)k y ∈ A (X)j xy ∈ A (X)k+j

Z,W X T  Z ⊕x

T  W =x T  Xx

V (σ) V (τ) V (τ) ⊂ V (σ)

x = [Z] y = [W ] Z,W xy = [Z ∩ W ]
Z,W Z ∼′ Z

W ∼′ W [Z] ⋅ [W ] = [Z ∩′ W ]′

A  ∗ A∗
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Analogy to Topology

ie the chow groups correspond to homology groups.

ie the Chow rings correspond to cohomology rings.

A  ⟷∗ H  ∗

A ⟷∗ H∗

H   module over H ⟷∗
∗ A   module over A∗

∗


