Chow groups

Definition of Chow groups

Let X be a variety.

Define $Z_k(X) Z_k(X) \{ V \subset X : V \text{ is a } k \text{-dimensional subvariety} \}.$

We can define an equivalence relation on $Z_k(X)$ as follows: $V_1\sim V_2$ if there exists $W\subset X$ of dimension k+1 and $f\in K^*(W)$ such that $V_1-V_2={
m div} f$

With this equivalence relation we can define the Chow groups:

Definition - For a variety X, its Chow groups are $A_k(X) = Z_k(X)/\sim$

Notice that in general, $A_k(X)$ is very difficult to understand

Basic Structures

Let X be an n-dimensional variety.

Fundamental class

To compute $A_n(X)$, notice that there is no $W \subset X$ of dimension n+1, hence $A_n(X) = Z_n(X).$

This is the free abelian group generated by the irreducible components of X. But X, is an n-dimensional variety, so [X] is the generator, ie. 1 = [X] is the fundamental class.

 $\rightarrow A_n(X) = \mathbb{Z}$

Proper push-forward

Let f:X
ightarrow Y be a proper map

Then there is an induced map

$$egin{aligned} f_*: A_k(X) & o A_k(Y) \ & [Z] &\mapsto [f(Z)] \end{aligned}$$

which is called the proper push-forward.

More precisely,

$$[Z]\mapsto egin{cases} \deg(V/f(V))\cdot [f(Z)] & ext{if } \dim f(Z)=\dim Z \ 0 & ext{otherwise} \end{cases}$$

but for our purposes we can assume the induced map looks like the first map.

Excision

Let $U \subset X$ be open, let Z = X - U

Then we have an exact sequence

$$A_k(Z) o^{j_*} A_k(X) o^{i^*} A_k(U) o 0$$

Notice that for divisors, we had the exact sequence $A_{n-1}(Z) \to A_{n-1}(X) \to A_{n-1}(U) \to 0$, which exactly what we get here.

Main Theorem

Remember that on an arbitrary toric variety X, the Weil divisors generate the group $A_{n-1}(X) = \operatorname{WDiv}/K^*(X).$

We want to generalise this to Chow groups A_k for k
eq n-1:

Theorem - The Chow group $A_k(X)$ of an arbitrary toric variety $X = X(\triangle)$ is generated by the classes of the orbit closures $V(\sigma)$ of the cones σ of dimension n - k of \triangle .

Proof

- Define $X_i \subset X$ as $X_i = \bigcup_{\sigma: \dim(\sigma) \ge n-i} V(\sigma)$ ie the union of the closed subvarieties corresponding to cones of dimension at least n-i.
- This gives the following chain of inclusions of subvarieties: $X = X_n \supset X_{n-1} \supset \cdots \supset X_{-1} = \emptyset$
- With theses definitions we have $X_i X_{i-1} = \cup_{\sigma:\dim(\sigma)=n-i} \mathcal{O}_{\sigma}$ ie the disjoint union of orbits of cones of dimension n-i
- Using the excision property we had above, this gives the exact sequence

$$A_k(X_{i-1}) o A_k(X_i) o \oplus_{\dim \sigma = n-i} A_k(\mathcal{O}_\sigma) o 0$$

- Now we have that for an n-torus T, $A_k(T)=0$ for k
eq n and $A_n(T)=\mathbb{Z}\cdot [T]$

Using that \mathcal{O}_{σ} are tori combined with what we saw above, we get for k=i

$$A_k(X_{i-1}) o A_k(X_i) o \oplus_{\dim \sigma = n-i} \mathbb{Z} \cdot [\mathcal{O}_\sigma] o 0$$

- · Thus we can inductively show that
 - $\circ A_k(X_i) = 0$ if k > i
 - $\circ \ A_k(X_i)\cong \oplus_{\dim\sigma=n-i}\mathbb{Z}\cdot [\mathcal{O}_\sigma]$ for $k\leq i$
- Notice that the restriction from $A_k(X_i)$ to $A_k(\mathcal{O}_{\sigma})$ maps $[V(\sigma)] \mapsto [\mathcal{O}_{\sigma}]$,
- Therefore the classes $[V(\sigma)]$ for $\dim(\sigma) = n-k$ generate $A_k(X_i)$ for $k \leq i$, hence generate $A_k(X)$

Definition of Chow rings

From now on suppose X is non-singular.

Definition - The Chow ring for non-singular varieties is defined as follows: $A^k(X) := A_{n-k}(X).$

Theorem - $A^*(X) = \oplus A^k(X)$ is a ring.

These Chow rings have a ring structure attached to them: Let $x \in A^k(X)$ and $y \in A^j(X)$, then $xy \in A^{k+j}(X)$.

Definition - If Z,W are subspaces of X, then they intersect transversely if $T_xZ\oplus T_xW=T_xX$

On a toric variety, $V(\sigma)$ and $V(\tau)$ intersect transversely, unless $V(\tau) \subset V(\sigma)$ If x = [Z], y = [W] and Z, W are transverse, then $xy = [Z \cap W]$. If Z, W are not transverse, then we have to shift them slightly to get $Z' \sim Z$ and $W' \sim W$ such that they are transverse and hence $[Z] \cdot [W] = [Z' \cap W']$

We now have a Chow group A_* which is a module over the Chow ring A^* .

Analogy to Topology

 $A_* \longleftrightarrow H_*$

ie the chow groups correspond to homology groups.

 $A^* \longleftrightarrow H^*$

ie the Chow rings correspond to cohomology rings.

 $H_* ext{ module over } H^* \longleftrightarrow A_* ext{ module over } A^*$