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Chow groups

Definition of Chow groups
Let ﻿ be a variety.

Define ﻿ ﻿ ﻿.

We can define an equivalence relation on ﻿ as follows:

﻿ if there exists ﻿ of dimension ﻿ and ﻿ such that 
﻿

With this equivalence relation we can define the Chow groups:

Definition - For a variety ﻿, its Chow groups are ﻿

Notice that in general, ﻿ is very difficult to understand

Basic Structures
Let ﻿ be an ﻿-dimensional variety.

Fundamental class
To compute ﻿, notice that there is no ﻿ of dimension ﻿, hence 

﻿.
This is the free abelian group generated by the irreducible components of ﻿. But ﻿, 
is an ﻿-dimensional variety, so ﻿ is the generator, ie. ﻿ is the fundamental 

class.

→ ﻿

Proper push-forward
Let ﻿ be a proper map

Then there is an induced map 

which is called the proper push-forward.

X

Z ​(X)k Z ​(X)k {V ⊂ X : V  is a k-dimensional subvariety}

Z ​(X)k

V ​ ∼1 V ​2 W ⊂ X k + 1 f ∈ K (W )∗

V ​ −1 V ​ =2 divf

X A ​(X) =k Z ​(X)/ ∼k

A ​(X)k

X n

A ​(X)n W ⊂ X n+ 1
A ​(X) =n Z ​(X)n

X X

n [X] 1 = [X]

A ​(X) =n Z

f : X → Y

f ​ :∗ A ​(X) →k A ​(Y )k

[Z] ↦ [f(Z)]
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More precisely,

but for our purposes we can assume the induced map looks like the first map.

Excision
Let ﻿ be open, let ﻿

Then we have an exact sequence 

Notice that for divisors, we had the exact sequence 
﻿, which exactly what we get here.

Main Theorem
Remember that on an arbitrary toric variety ﻿, the Weil divisors generate the group 

﻿.
We want to generalise this to Chow groups ﻿ for ﻿:

Theorem - The Chow group ﻿ of an arbitrary toric variety ﻿ is 
generated by the classes of the orbit closures ﻿ of the cones ﻿ of dimension 

﻿ of ﻿.

Proof

Define ﻿ as ﻿ 
ie the union of the closed subvarieties corresponding to cones of dimension at 
least ﻿. 

This gives the following chain of inclusions of subvarieties:
﻿

With theses definitions we have ﻿ 
ie the disjoint union of orbits of cones of dimension ﻿

Using the excision property we had above, this gives the exact sequence

[Z] ↦ ​ ​{
deg(V /f(V )) ⋅ [f(Z)]
0

if  dim f(Z) = dimZ

otherwise

U ⊂ X Z = X − U

A ​(Z) →k
j ​∗ A ​(X) →k

i∗ A ​(U) →k 0

A ​(Z) →n−1 A ​(X) →n−1

A ​(U) →n−1 0

X

A ​(X) =n−1 WDiv/K (X)∗

A ​k k = n− 1

A ​(X)k X = X(△)
V (σ) σ

n− k △

X ​ ⊂i X X ​ =i ∪ ​V (σ)σ:dim(σ)≥n−i

n− i

X = X ⊃n X ​ ⊃n−1 ⋯ ⊃ X ​ =−1 ∅

X ​ −i X ​ =i−1 ∪ ​O ​σ:dim(σ)=n−i σ

n− i
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Now we have that for an ﻿-torus ﻿, ﻿ for ﻿ and 

﻿

Using that ﻿ are tori combined with what we saw above, we get for ﻿

Thus we can inductively show that 

﻿ if ﻿

﻿ for ﻿

Notice that the restriction from ﻿ to ﻿ maps ﻿, 

Therefore the classes ﻿ for ﻿ generate ﻿ for ﻿, 
hence generate ﻿

Definition of Chow rings
From now on suppose ﻿ is non-singular.

Definition - The Chow ring for non-singular varieties is defined as follows: 
﻿.

Theorem - ﻿ is a ring.

These Chow rings have a ring structure attached to them:
Let ﻿ and ﻿, then ﻿.

Definition - If ﻿ are subspaces of ﻿, then they intersect transversely if 
﻿

On a toric variety, ﻿ and ﻿ intersect transversely, unless ﻿

If ﻿, ﻿ and ﻿ are transverse, then ﻿.
If ﻿ are not transverse, then we have to shift them slightly to get ﻿ and 

﻿ such that they are transverse and hence ﻿

We now have a Chow group ﻿ which is a module over the Chow ring ﻿.

A ​(X ​) →k i−1 A ​(X ​) →k i ⊕ ​A ​(O ​) →dim σ=n−i k σ 0

n T A ​(T ) =k 0 k = n A ​(T ) =n Z ⋅
[T ]

O ​σ k = i

A ​(X ​) →k i−1 A ​(X ​) →k i ⊕ ​Z ⋅dim σ=n−i [O ​] →σ 0

A ​(X ​) =k i 0 k > i

A ​(X ​) ≅k i ⊕ ​Z ⋅dim σ=n−i [O ​]σ k ≤ i

A ​(X ​)k i A ​(O ​)k σ [V (σ)] ↦ [O ​]σ

[V (σ)] dim(σ) = n− k A ​(X ​)k i k ≤ i

A ​(X)k

X

A (X) :=k A ​(X)n−k

A (X) =∗ ⊕A (X)k

x ∈ A (X)k y ∈ A (X)j xy ∈ A (X)k+j

Z,W X T ​Z ⊕x

T ​W =x T ​Xx

V (σ) V (τ) V (τ) ⊂ V (σ)

x = [Z] y = [W ] Z,W xy = [Z ∩ W ]
Z,W Z ∼′ Z

W ∼′ W [Z] ⋅ [W ] = [Z ∩′ W ]′

A ​∗ A∗
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Analogy to Topology

ie the chow groups correspond to homology groups.

ie the Chow rings correspond to cohomology rings.

A ​ ⟷∗ H ​∗

A ⟷∗ H∗

H ​ module over H ⟷∗
∗ A ​ module over A∗

∗


