Chow groups

Definition of Chow groups

Let X be a variety.

Define $Z_{k}(X) Z_{k}(X)\{V \subset X: V$ is a k-dimensional subvariety $\}$.
We can define an equivalence relation on $Z_{k}(X)$ as follows:
$V_{1} \sim V_{2}$ if there exists $W \subset X$ of dimension $k+1$ and $f \in K^{*}(W)$ such that $V_{1}-V_{2}=\operatorname{div} f$
With this equivalence relation we can define the Chow groups:
Definition - For a variety X, its Chow groups are $A_{k}(X)=Z_{k}(X) / \sim$
Notice that in general, $A_{k}(X)$ is very difficult to understand

Basic Structures

Let X be an n-dimensional variety.

Fundamental class

To compute $A_{n}(X)$, notice that there is no $W \subset X$ of dimension $n+1$, hence $A_{n}(X)=Z_{n}(X)$.
This is the free abelian group generated by the irreducible components of X. But X, is an n-dimensional variety, so $[X]$ is the generator, ie. $1=[X]$ is the fundamental class.
$\rightarrow A_{n}(X)=\mathbb{Z}$

Proper push-forward

Let $f: X \rightarrow Y$ be a proper map
Then there is an induced map

$$
\begin{gathered}
f_{*}: A_{k}(X) \rightarrow A_{k}(Y) \\
{[Z] \mapsto[f(Z)]}
\end{gathered}
$$

which is called the proper push-forward.

More precisely,

$$
[Z] \mapsto \begin{cases}\operatorname{deg}(V / f(V)) \cdot[f(Z)] & \text { if } \operatorname{dim} f(Z)=\operatorname{dim} Z \\ 0 & \text { otherwise }\end{cases}
$$

but for our purposes we can assume the induced map looks like the first map.

Excision

Let $U \subset X$ be open, let $Z=X-U$
Then we have an exact sequence

$$
A_{k}(Z) \rightarrow^{j_{*}} A_{k}(X) \rightarrow^{i^{*}} A_{k}(U) \rightarrow 0
$$

Notice that for divisors, we had the exact sequence $A_{n-1}(Z) \rightarrow A_{n-1}(X) \rightarrow$ $A_{n-1}(U) \rightarrow 0$, which exactly what we get here.

Main Theorem

Remember that on an arbitrary toric variety X, the Weil divisors generate the group $A_{n-1}(X)=\mathrm{WDiv} / K^{*}(X)$.
We want to generalise this to Chow groups A_{k} for $k \neq n-1$:

Theorem - The Chow group $A_{k}(X)$ of an arbitrary toric variety $X=X(\triangle)$ is generated by the classes of the orbit closures $V(\sigma)$ of the cones σ of dimension $n-k$ of \triangle.

Proof

- Define $X_{i} \subset X$ as $X_{i}=\cup_{\sigma: \operatorname{dim}(\sigma) \geq n-i} V(\sigma)$ ie the union of the closed subvarieties corresponding to cones of dimension at least $n-i$.
- This gives the following chain of inclusions of subvarieties:
$X=X_{n} \supset X_{n-1} \supset \cdots \supset X_{-1}=\emptyset$
- With theses definitions we have $X_{i}-X_{i-1}=\cup_{\sigma: \operatorname{dim}(\sigma)=n-i} \mathcal{O}_{\sigma}$ ie the disjoint union of orbits of cones of dimension $n-i$
- Using the excision property we had above, this gives the exact sequence

$$
A_{k}\left(X_{i-1}\right) \rightarrow A_{k}\left(X_{i}\right) \rightarrow \oplus_{\operatorname{dim} \sigma=n-i} A_{k}\left(\mathcal{O}_{\sigma}\right) \rightarrow 0
$$

- Now we have that for an n-torus $T, A_{k}(T)=0$ for $k \neq n$ and $A_{n}(T)=\mathbb{Z}$. [T] Using that \mathcal{O}_{σ} are tori combined with what we saw above, we get for $k=i$

$$
A_{k}\left(X_{i-1}\right) \rightarrow A_{k}\left(X_{i}\right) \rightarrow \oplus_{\operatorname{dim} \sigma=n-i} \mathbb{Z} \cdot\left[\mathcal{O}_{\sigma}\right] \rightarrow 0
$$

- Thus we can inductively show that
- $A_{k}\left(X_{i}\right)=0$ if $k>i$
- $A_{k}\left(X_{i}\right) \cong \oplus_{\operatorname{dim} \sigma=n-i} \mathbb{Z} \cdot\left[\mathcal{O}_{\sigma}\right]$ for $k \leq i$
- Notice that the restriction from $A_{k}\left(X_{i}\right)$ to $A_{k}\left(\mathcal{O}_{\sigma}\right)$ maps $[V(\sigma)] \mapsto\left[\mathcal{O}_{\sigma}\right]$,
- Therefore the classes $[V(\sigma)]$ for $\operatorname{dim}(\sigma)=n-k$ generate $A_{k}\left(X_{i}\right)$ for $k \leq i$, hence generate $A_{k}(X)$

Definition of Chow rings

From now on suppose X is non-singular.
Definition - The Chow ring for non-singular varieties is defined as follows:
$A^{k}(X):=A_{n-k}(X)$.
Theorem - $A^{*}(X)=\oplus A^{k}(X)$ is a ring.
These Chow rings have a ring structure attached to them:
Let $x \in A^{k}(X)$ and $y \in A^{j}(X)$, then $x y \in A^{k+j}(X)$.

Definition - If Z, W are subspaces of X, then they intersect transversely if $T_{x} Z \oplus$ $T_{x} W=T_{x} X$

On a toric variety, $V(\sigma)$ and $V(\tau)$ intersect transversely, unless $V(\tau) \subset V(\sigma)$ If $x=[Z], y=[W]$ and Z, W are transverse, then $x y=[Z \cap W]$. If Z, W are not transverse, then we have to shift them slightly to get $Z^{\prime} \sim Z$ and $W^{\prime} \sim W$ such that they are transverse and hence $[Z] \cdot[W]=\left[Z^{\prime} \cap W^{\prime}\right]$

We now have a Chow group A_{*} which is a module over the Chow ring A^{*}.

Analogy to Topology

$$
A_{*} \longleftrightarrow H_{*}
$$

ie the chow groups correspond to homology groups.

$$
A^{*} \longleftrightarrow H^{*}
$$

ie the Chow rings correspond to cohomology rings.
H_{*} module over $H^{*} \longleftrightarrow A_{*}$ module over A^{*}

