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Divisors

Definitions
Definition - On any variety  , a Weil divisor is a finite formal sum   of 
irreducible, closed subvarieties   of codimension one in  .

Definition - A  Cartier divisor   is given by the data of a covering of 

  by affine open sets  , and nonzero rational functions   on   called 
local equation, such that the ratios   are nowhere zero regular (holomorphic) 
functions on  .

A nonzero rational function   determines a principal divisor   whose local 

equation in each open set is  .
The group of principal divisors is a subgroup of the group of Cartier divisors.

Relationship
A Cartier divisor   determines a Weil divisor, denoted   by 

where   is the order of vanishing of an equation   for   in the local ring 

along the subvariety  .

Divisors on toric varieties
We are interested in divisors on toric varieties   that are mapped to 
themselves by the torus.

We want to show the following:
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T -Weil divisors  ≃ ⊕  Zτ∈△(1)

T -Cartier divisors ≃ PL(△)
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They are of the form

such that the   are irreducible subvarieties of codimension one in   that are  -
stable, ie fixed by  .

By the Orbit-cone correspondence, orbits of codimension one under the action of   

correspond to cones of dimension one.

As the cones of dimension one are the rays of the fan, for each ray  , the 
corresponding orbit closure    (a union of torus orbits) is an irreducible 
subvariety of codimension one, so  .

Thus the T-Weil divisors are exactly the linear combinations of these   defined by 

orbit closures.

→   

T-Cartier=PL 

Grading = Torus action
We will assume the following, which is left as an exercise:

Grading by     Torus action by  

A Cartier divisor   on   is given by an  , by 
definition of Cartier divisors.

The divisor   is invariant under the torus action.
Thus, using the property above, it is graded by  , ie a direct sum of spaces   
over some set of  .

  has a grading, it’s graded pieces are  -dimensional, hence the   must 
be one-dimensional.

We know that  

Hence the only chance is that   is   or 0.
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From the Orbit-Cone correspondence we had that there is a distinguished point   
where   is principal, so we must have that    is 1-dimensional, where   is the 
sum of all   for  .

So we have proven that   is determined by a unique  

Thus a cartier divisor on   has the form   for some unique  .

Map  -Cartier    -Weil
For affine toric varieties  , we can define a map from T-Cartier to T-Weil divisors: 

where   is the primitive vector on  .

Proof - 

the order can be calculated on the open set  , on which 

  corresponds to   

this reduces the calculations to the one-dimensional case, ie where  ,   is 
generated by  , and  .

then   is the monomial  , whose order of vanishing at the origin is  .

T-Cartier on  
Let  .

We want to show that T-Cartier divisors on   correspond to elements of  .

If   is full-dimensional,  , so  , and we saw that a T-
Cartier divisor on   corresponds to an element of  .

If   is not full-dimensional, then
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Therefore  -Cartier divisors on   correspond to elements of  .

 

On a general toric variety   we can thus define T-Cartier divisors by 
specifying an element   for each cone  , which then define 
divisors   on  . 

The divisors must agree on overlaps, ie when   is a face of  ,   must map to 
  under the canonical map  .

 
Consider a real-valued function   on the support  . If it is 
a piecewise linear function  , then it is

linear on each  
this means there exists   for each   such that   for 

  

 -valued on  

  holds whenever    

We saw earlier that  .
Combining this with the fact that Cartier divisors are specified by   
and that they agree on overlaps, we get the desired correspondence:

Using this we can define the following map: 

div(χ ) =u div(χ )u′
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T -Cartier divisors ≃ PL(△)
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T -Cartier divisors ≃ PL(△)
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Special cases

  non-singular / smooth varieties
Consider the map 

This is an injective homomorphism.

If   is non-singular, the   are part of a  -basis for  , so there exists some   
such that  , hence the homomorphism is surjective.

Therefore, for smooth varieties, 

PL(△) → ⊕  Zττ∈△(1)
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T-Weil divisors ≃ T-Cartier divisors


