Divisors

Definitions

Definition - On any variety X, a Weil divisor is a finite formal sum $\sum a_{i} V_{i}$ of irreducible, closed subvarieties V_{i} of codimension one in X.

Definition-A Cartier divisor $D=\left(U_{\alpha}, f_{\alpha}\right)$ is given by the data of a covering of $X=\cup U_{\alpha}$ by affine open sets U_{α}, and nonzero rational functions f_{α} on U_{α} called local equation, such that the ratios f_{α} / f_{β} are nowhere zero regular (holomorphic) functions on $U_{\alpha} \cap U_{\beta}$.

A nonzero rational function f determines a principal divisor $\operatorname{div}(f)$ whose local equation in each open set is f.
The group of principal divisors is a subgroup of the group of Cartier divisors.

Relationship

A Cartier divisor D determines a Weil divisor, denoted $[D]$ by

$$
[D]=\sum_{\operatorname{cod}(V, X)=1} \operatorname{ord}_{V}\left(f_{\alpha}\right) \cdot V
$$

where $\operatorname{ord}_{V}\left(f_{\alpha}\right)$ is the order of vanishing of an equation f_{α} for D in the local ring along the subvariety V.

Divisors on toric varieties

We are interested in divisors on toric varieties $X(\triangle, N)$ that are mapped to themselves by the torus.

We want to show the following:
T-Weil divisors $\simeq \oplus_{\tau \in \Delta(1)} \mathbb{Z}$
T-Cartier divisors $\simeq P L(\triangle)$

T-Weil divisors

They are of the form

$$
\sum a_{i}\left[D_{i}\right]
$$

such that the $\left[D_{i}\right]$ are irreducible subvarieties of codimension one in X that are T stable, ie fixed by T.

By the Orbit-cone correspondence, orbits of codimension one under the action of T correspond to cones of dimension one.
As the cones of dimension one are the rays of the fan, for each ray $\tau_{i} \in \triangle(1)$, the corresponding orbit closure $V\left(\tau_{i}\right)$ (a union of torus orbits) is an irreducible subvariety of codimension one, so $D_{i}=V\left(\tau_{i}\right)$.

Thus the T-Weil divisors are exactly the linear combinations of these D_{i} defined by orbit closures.
$\rightarrow T$-Weil divisors $\simeq \oplus_{\tau_{i} \in \Delta(1)} \mathbb{Z}\left[D_{i}\right]$

T-Cartier=PL

Grading $=$ Torus action

We will assume the following, which is left as an exercise:
Grading by $M \Longleftrightarrow$ Torus action by $\operatorname{Spec} \mathbb{C}[M]$

A Cartier divisor D on $U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[S_{\sigma}\right]$ is given by an $I \subset Q\left(\mathbb{C}\left[S_{\sigma}\right]\right)$, by definition of Cartier divisors.

The divisor D is invariant under the torus action.
Thus, using the property above, it is graded by M, ie a direct sum of spaces $\mathbb{C} \cdot \chi^{u}$ over some set of $u \in M$.

$$
I=\oplus_{u \in M} I_{u}
$$

$Q\left(\mathbb{C}\left[S_{\sigma}\right]\right)$ has a grading, it's graded pieces are 1-dimensional, hence the I_{u} must be one-dimensional.

We know that $\mathbb{C}[M]=\oplus_{u \in M} \mathbb{C} \chi^{u}$
Hence the only chance is that I_{u} is $\mathbb{C} \chi^{u}$ or 0 .

From the Orbit-Cone correspondence we had that there is a distinguished point x_{σ} where I is principal, so we must have that $I / m I$ is 1-dimensional, where m is the sum of all $\mathbb{C} \cdot \chi^{u}$ for $u \neq 0$.

So we have proven that I is determined by a unique $u \in M$
Thus a cartier divisor on U_{σ} has the form $\operatorname{div}\left(\chi^{u}\right)$ for some unique $u \in M$.

Map T-Cartier $\rightarrow T$-Weil

For affine toric varieties U_{σ}, we can define a map from T-Cartier to T-Weil divisors:

$$
\operatorname{div}\left(\chi^{u}\right) \mapsto \sum_{v_{i}}\left\langle u, v_{i}\right\rangle\left[D_{\tau_{i}}\right]
$$

where v_{i} is the primitive vector on τ_{i}.
Proof -

- the order can be calculated on the open set $U_{\tau} \cong \mathbb{C} \times\left(\mathbb{C}^{*}\right)^{n-1}$, on which $V(\tau)$ corresponds to $(0) \times\left(\mathbb{C}^{*}\right)^{n-1}$
- this reduces the calculations to the one-dimensional case, ie where $N=\mathbb{Z}, \tau$ is generated by $v=1$, and $u \in M=\mathbb{Z}$.
- then χ^{u} is the monomial X^{u}, whose order of vanishing at the origin is u.

T-Cartier on U_{σ}

Let $M(\sigma)=\sigma^{\perp} \cap M$.
We want to show that T-Cartier divisors on U_{σ} correspond to elements of $M / M(\sigma)$.

If σ is full-dimensional, $\sigma^{\perp}=\{0\}$, so $M / \sigma^{\perp} \cap M=M$, and we saw that a TCartier divisor on U_{σ} corresponds to an element of M.

If σ is not full-dimensional, then

$$
\begin{gathered}
\quad \operatorname{div}\left(\chi^{u}\right)=\operatorname{div}\left(\chi^{u^{\prime}}\right) \\
\Longleftrightarrow\left\langle u-u^{\prime}, v_{i}\right\rangle=0 \quad \forall \tau_{i} \\
\Longleftrightarrow\left\langle u-u^{\prime}, w\right\rangle=0 \quad \forall w \in \sigma \\
\Longleftrightarrow u-u^{\prime} \in \sigma^{\perp} \cap M=M(\sigma)
\end{gathered}
$$

Therefore T-Cartier divisors on U_{σ} correspond to elements of $M / M(\sigma)$.
$\left\{T\right.$-Cartier divisors on $\left.U_{\sigma}\right\} \cong M / M(\sigma)$

On a general toric variety $X(\triangle, N)$ we can thus define T-Cartier divisors by specifying an element $u(\sigma) \in M / M(\sigma)$ for each cone $\sigma \in \triangle$, which then define divisors $\operatorname{div}\left(\chi^{u(\sigma)}\right)$ on U_{σ}.
The divisors must agree on overlaps, ie when τ is a face of $\sigma, u(\sigma)$ must map to $u(\tau)$ under the canonical map $M / M(\sigma) \rightarrow M / M(\tau)$.

T-Cartier divisors $\simeq P L(\triangle)$

Consider a real-valued function $h:|\triangle| \rightarrow \mathbb{R}$ on the support $|\triangle|=\cup_{\sigma \in \Delta} \sigma$. If it is a piecewise linear function \triangle, then it is

- linear on each $\sigma \in \triangle$
this means there exists $l_{\sigma} \in M$ for each $\sigma \in \triangle$ such that $h(n)=\left\langle l_{\sigma}, n\right\rangle$ for $n \in \sigma$
- \mathbb{Z}-valued on $N \cap|\triangle|$
- $\left\langle l_{\sigma}, n\right\rangle=\left\langle l_{\tau}, n\right\rangle$ holds whenever $n \in \tau<\sigma$

We saw earlier that $M=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z}) \subset \operatorname{Hom}_{\mathbb{R}}\left(N_{\mathbb{R}}, \mathbb{R}\right)=M_{\mathbb{R}}$.
Combining this with the fact that Cartier divisors are specified by $u(\sigma) \in M / M(\sigma)$ and that they agree on overlaps, we get the desired correspondence:

$$
T \text {-Cartier divisors } \simeq P L(\triangle)
$$

Using this we can define the following map:

$$
\begin{gathered}
P L(\triangle) \rightarrow \oplus_{\tau \in \triangle(1)} \mathbb{Z} \tau \\
f \mapsto \sum_{\tau_{i}} f\left(v_{i}\right) \cdot \tau_{i}
\end{gathered}
$$

Special cases

non-singular / smooth varieties

Consider the map

$$
\begin{gathered}
P L(\triangle) \rightarrow \oplus_{\tau_{i} \in \Delta(1)} \mathbb{Z} \\
h \mapsto h\left(v_{i}\right)
\end{gathered}
$$

This is an injective homomorphism.
If σ is non-singular, the v_{i} are part of a \mathbb{Z}-basis for N, so there exists some $u \in M$ such that $\left\langle u, v_{i}\right\rangle=h\left(v_{i}\right)$, hence the homomorphism is surjective.

Therefore, for smooth varieties,
T-Weil divisors \simeq T-Cartier divisors

