# PICARD GROUPS OF TORIC VARIETIES 

## 1. General Algebraic Geometry

We will work with an $n$-dimensional variety $X$. We have seen in the previous lecture the notion of Weil and Cartier divisors. These are written as $\mathrm{WDiv}(\mathrm{X})$ and $\mathrm{CDiv}(\mathrm{X})$.

Eva explained that every (non-zero) rational function $f \in K^{*}(X)$ gives a divisor, by setting

$$
\operatorname{div}(f)=\sum_{Z} \operatorname{ord}_{V}(f)[Z]
$$

Definition 1. The Chow group of dimension $n-1$ cycle is the group

$$
A_{n-1}(X)=\operatorname{WDiv}(X) / K^{*}(X)
$$

Definition 2. The Picard group of $X$ is the quotient of Cartier divisors modulo principal ones,

$$
\operatorname{Pic}(\mathrm{X})=\operatorname{CDiv}(\mathrm{X}) / \mathrm{K}^{*}(\mathrm{X})
$$

Thus, two Weil or Cartier divisors become equivalent in $A_{n-1}$ or Pic repsectively if they differ by the divisor of a rational function. Divisors of rational functions are sometimes called principal.

The group $A_{n-1}(X)$ has a very important property, called excision.
Theorem 1.1. Let $\mathrm{Z} \subset \mathrm{X}$ be closed, and $\mathrm{U}=\mathrm{X}-\mathrm{Z}$ its open complement. Then we have an exact sequence

$$
A_{n-1}(Z) \longrightarrow A_{n-1}(X) \longrightarrow A_{n-1}(U) \longrightarrow 0
$$

Before giving the proof, let's discuss the maps. The map $A_{n-1}(X) \rightarrow A_{n-1}(U)$ sends $\sum a_{i} Z_{i}$ to the restriction $\left.\sum a_{i} Z_{i}\right|_{u}$. This is well-defined, because if $\sum a_{i} Z_{i}=\operatorname{WDiv}(f)$, then so is $\left.\sum a_{i} Z_{i}\right|_{u}$ : the fraction field of $X$ and $U$ is the same. The map $A_{n-1}(Z)$ takes a class $\sum a_{i} W_{i}$ and simply includes it into $X$.

Proof. The fact is deep, but the proof is easy. Suppose

$$
\sum a_{i}\left[Z_{i}\right]
$$

is a divisors on U . Then we can get a divisor on X simply by closure,

$$
\sum a_{i}\left[\overline{Z_{i}}\right]
$$

So the map $A_{n-1}(X) \rightarrow A_{n-1}(U)$ is surjective. Let us next suppose that

$$
\left.\sum a_{i}\left[Z_{i}\right]\right|_{u}=\operatorname{div}(f)
$$

Then, since the fraction field of $X$ and $U$ is the same

$$
\sum a_{i}\left[Z_{i}\right]-\operatorname{div}(f)
$$

is the 0 divisor on $U$, hence is supported on $Z$. This proves the claim.

## 2. Toric Varieties

The excision sequence has the following very nice consequence for toric varieties. Let us assume $\mathrm{X}=\mathrm{X}(\Delta, \mathrm{N})$ is a toric variety, $\mathrm{U}=\mathrm{T}$ is the torus, and $\mathrm{Z}=\mathrm{X}-\mathrm{T}$ is the boundary. Then we apply our proposition and find

$$
A_{n-1}(Z) \longrightarrow A_{n-1}(X) \longrightarrow A_{n-1}(T) \longrightarrow 0
$$

This is good news, because $T=\operatorname{Spec} \mathbb{C}\left[x_{1}, x_{1}^{-1}, \cdots, x_{n}, x_{n}^{-1}\right]$, which is the spectrum of a unique factorization domain, and we have
Lemma 2.1. Suppose A is a UFD, $\mathrm{U}=\operatorname{Spec} \mathrm{A}$. Then

$$
A_{n-1}(U)=0
$$

Proof. A divisor on U corresponds to a sum of codimension 1 subvarieties. These correspond to prime ideals of height 1 , i.e. $p$ such that there is no prime $q$ with $0 \subset q \subset p$. We claim that all such $p$ are principal: This is because an ideal is prime if and only if it is generated by a collection of relatively prime and irreducible elements ( $\mathrm{f}_{1}, \cdots, f_{m}$ ), and such ideals have height 1 if and only if they are generated by exactly one element.

This means that our sequence above simplifies, and we have

$$
A_{n-1}(Z) \rightarrow A_{n-1}(X) \rightarrow 0
$$

But $A_{n-1}(Z)$ is nothing but the T-Weil divisors from Eva's talk: it is

$$
A_{n-1}(Z)=\operatorname{WDiv}^{\top}(X)
$$

and thus $A_{n-1}(X)$ is the quotient of that by the T-Weil divisors which are principal. Eva also showed that these are of the form

$$
\operatorname{WDiv}\left(\chi^{u}\right)
$$

for $u \in M$. So we have found

$$
A_{n-1}(X)=\operatorname{WDiv}^{\top}(X) / M=\oplus_{\rho \in \Delta(1)} \mathbb{Z} \rho / M
$$

Corollary 2.2. For a toric variety $X=X(\Delta, N)$, we have

$$
\operatorname{Pic}(X)=\operatorname{CDiv}^{\top}(X) / M
$$

Proof. We have a diagram


The diagram is a fiber product: The elements in $\operatorname{CDiv}^{\top}(X)$ are the elements in CDiv that map into the subgroup $W_{D i v}{ }^{\top}$ of WDiv. Consider an element $L$ of $\operatorname{Pic}(X)$. It is an equivalence class of a Cartier divisor [D], up to rational equivalence. Since $A_{n-1}(X)$ is generated by T-invariant Weildivisors, $L$ is in fact equivalent to a T-invariant Cartier divisor [ E ], up to rational equivalence. Since rational equivalence is the same for Weil and Cartier divisors, we can conclude that $\operatorname{CDiv}^{\top}(\mathrm{X})$ surjects onto $\operatorname{Pic}(\mathrm{X})$, and the kernel consists of T-invariant rational functions, i.e. M.

Thus, we get
Theorem 2.3 (Main Theorem). Let $\mathrm{X}=\mathrm{X}(\Delta, \mathrm{N})$ be a toric variety.

$$
\operatorname{Pic}(X)=\operatorname{PL}(\Delta) / M
$$

Proof. From Eva's talk we know

$$
\mathrm{CDiv}^{\top}=\operatorname{PL}(\Delta)
$$

From here on, do several examples.

