PICARD GROUPS OF TORIC VARIETIES

1. GENERAL ALGEBRAIC GEOMETRY

We will work with an n-dimensional variety X. We have seen in the previous lecture the notion of Weil and Cartier divisors. These are written as WDiv(X) and CDiv(X).

Eva explained that every (non-zero) rational function $f \in K^*(X)$ gives a divisor, by setting

$$div(f) = \sum_{Z} ord_{V}(f)[Z]$$

Definition 1. The *Chow group* of dimension n - 1 cycle is the group

$$A_{n-1}(X) = WDiv(X)/K^*(X)$$

Definition 2. The Picard group of X is the quotient of Cartier divisors modulo principal ones,

$$\operatorname{Pic}(X) = \operatorname{CDiv}(X)/K^*(X)$$

Thus, two Weil or Cartier divisors become equivalent in A_{n-1} or Pic repsectively if they differ by the divisor of a rational function. Divisors of rational functions are sometimes called principal.

The group $A_{n-1}(X)$ has a very important property, called excision.

Theorem 1.1. Let $Z \subset X$ be closed, and U = X - Z its open complement. Then we have an exact sequence

$$A_{n-1}(Z) \longrightarrow A_{n-1}(X) \longrightarrow A_{n-1}(U) \longrightarrow 0$$

Before giving the proof, let's discuss the maps. The map $A_{n-1}(X) \rightarrow A_{n-1}(U)$ sends $\sum a_i Z_i$ to the restriction $\sum a_i Z_i|_U$. This is well-defined, because if $\sum a_i Z_i = WDiv(f)$, then so is $\sum a_i Z_i|_U$: the fraction field of X and U is the same. The map $A_{n-1}(Z)$ takes a class $\sum a_i W_i$ and simply includes it into X.

Proof. The fact is deep, but the proof is easy. Suppose

$$\sum a_i[Z_i]$$

is a divisors on U. Then we can get a divisor on X simply by closure,

$$\sum a_i[\overline{Z_i}]$$

So the map $A_{n-1}(X) \to A_{n-1}(U)$ is surjective. Let us next suppose that

$$\sum \mathfrak{a}_{\mathfrak{i}}[\mathsf{Z}_{\mathfrak{i}}]|_{\mathfrak{U}} = \operatorname{div}(\mathsf{f})$$

Then, since the fraction field of X and U is the same

$$\sum a_i[Z_i] - \operatorname{div}(f)$$

is the 0 divisor on U, hence is supported on Z. This proves the claim.

 \Diamond

2. TORIC VARIETIES

The excision sequence has the following very nice consequence for toric varieties. Let us assume $X = X(\Delta, N)$ is a toric variety, U = T is the torus, and Z = X - T is the boundary. Then we apply our proposition and find

$$A_{n-1}(Z) \longrightarrow A_{n-1}(X) \longrightarrow A_{n-1}(T) \longrightarrow 0$$

This is good news, because $T = \text{Spec } \mathbb{C}[x_1, x_1^{-1}, \cdots, x_n, x_n^{-1}]$, which is the spectrum of a unique factorization domain, and we have

Lemma 2.1. Suppose A is a UFD, U = Spec A. Then

$$A_{n-1}(\mathbf{U}) = \mathbf{0}$$

Proof. A divisor on U corresponds to a sum of codimension 1 subvarieties. These correspond to prime ideals of height 1, i.e. p such that there is no prime q with $0 \subset q \subset p$. We claim that all such p are principal: This is because an ideal is prime if and only if it is generated by a collection of relatively prime and irreducible elements (f_1, \dots, f_m) , and such ideals have height 1 if and only if they are generated by exactly one element. \diamond

This means that our sequence above simplifies, and we have

$$A_{n-1}(Z) \to A_{n-1}(X) \to 0$$

But $A_{n-1}(Z)$ is nothing but the T-Weil divisors from Eva's talk: it is

$$A_{n-1}(Z) = WDiv^{T}(X)$$

and thus $A_{n-1}(X)$ is the quotient of that by the T-Weil divisors which are principal. Eva also showed that these are of the form

WDiv(χ^{u})

for $u \in M$. So we have found

$$A_{n-1}(X) = WDiv^{T}(X)/M = \bigoplus_{\rho \in \Delta(1)} \mathbb{Z}\rho/M$$

Corollary 2.2. *For a toric variety* $X = X(\Delta, N)$ *, we have*

$$Pic(X) = CDiv^{T}(X)/M$$

Proof. We have a diagram

$$\begin{array}{ccc} \text{CDiv}^{\mathsf{T}} & \longrightarrow & \text{CDiv} \\ & & & & \downarrow \\ & & & & \downarrow \\ \text{WDiv}^{\mathsf{T}} & \longrightarrow & \text{WDiv} \end{array}$$

The diagram is a fiber product: The elements in $\text{CDiv}^{\mathsf{T}}(X)$ are the elements in CDiv that map into the subgroup WDiv^{T} of WDiv. Consider an element L of Pic(X). It is an equivalence class of a Cartier divisor [D], up to rational equivalence. Since $A_{n-1}(X)$ is generated by T-invariant Weildivisors, L is in fact equivalent to a T-invariant Cartier divisor [E], up to rational equivalence. Since rational equivalence is the same for Weil and Cartier divisors, we can conclude that $\text{CDiv}^{\mathsf{T}}(X)$ surjects onto Pic(X), and the kernel consists of T-invariant rational functions, i.e. M. \Diamond

Thus, we get

Theorem 2.3 (Main Theorem). Let $X = X(\Delta, N)$ be a toric variety. $Pic(X) = PL(\Delta)/M$

Proof. From Eva's talk we know

$$CDiv^{\mathsf{T}} = PL(\Delta)$$

From here on, do several examples.

 \diamond