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Exercise Sheet 10 - Solutions

1. Consider L1(R) and L∞(R) with respect to the Lebesgue measure. Show that the canonical
map L1(R) → L∞(R)∗ is not surjective.

Hint: Use the Hahn-Banach theorem to extend the functional

f ∈ Cb(R) 7→ f(0) ∈ R.

Solution: Let ϕ : Cb(R) → R be the functional ϕ(f) = f(0). Note that ϕ(f) ⩽ ||f ||∞, so
the Hahn-Banach theorem implies that there is Φ: L∞(R) → R with ||Φ(f)|| ⩽ ||f ||∞ for all
f ∈ L∞(R). This implies that Φ is continuous.

Suppose there is f ∈ L1(R) with Φ(g) =
∫
R f(x)g(x)dx. Let K ⊂ R be a compact subset such

that 0 /∈ K. There exists a sequence of bump functions (φn) ∈ Cc(R) such that φm
L∞

−−→ 1K
and φn(0) = 0 for all n ∈ N. We obtain

Φ(1K) = lim
n→∞

Φ(φn) = lim
n→∞

ϕ(φn) = lim
n→∞

φn(0) = 0.

In other words, this means ∫
K

f(x)dx = 0

for each compact subset K ⊂ R with 0 /∈ K. Because the set {0} is a null set, the above
equality holds for each compact subset K. The Lebesgue measure is regular, so this implies∫

A

f(x)dx = 0

for each measurable A ⊂ R. Define the sets

Aϵ = {x ∈ R|f(x) ⩾ ϵ}
Bϵ = {x ∈ R|f(x) ⩽ −ϵ}

for all ϵ > 0. By the above equality

0 =

∫
Aϵ

f(x)dx ⩾ ϵµ(Aϵ)

thus µ(Aϵ) = 0 for each ϵ > 0. Similarly, we get µ(Bϵ) = 0 for all ϵ > 0. But this implies
f = 0 (up to a null set) and hence Φ = 0. This is a contradiction to, say, Φ(1) = 1.

2. Let E be a normed space that is separable. Show that BE∗

⩽1 (0) is metrizable in the weak*-
topology.

Solution: Let {vn : n ∈ N} ⊂ E be a dense countable subset and define X :=
∏

n∈N Dvn .
Consider the map

BE∗

⩽1 (0) → X
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from the proof of Theorem V. 29. This map is injective because the {vn} lie densely in E.
The proof of Theorem V. 29. shows that this map is open onto its image, so it defines a
homeomorphism of the image with BE∗

⩽1 (0) equipped with the weak*-topology. If we prove

that X is metrizable, then the ball is metrizable because the weak*-topology on BE∗

⩽1 (0) will
be induced by the restriction of the metric on X.

We construct a metric on the product space X with the formula

d((sv), (tv)) :=

∞∑
n=1

|svn − tvn |
||vn||2n

.

By the dominated convergence theorem, the function d : X × X → R is continuous. This
implies that the product topology on X is finer than the topology induced by d. Let n ∈ N,
t ∈ Dvn

and ϵ > 0. Set

U := Dv1 × · · · ×Dvn−1
×Bϵ(t)×Dvn+1

× · · · ⊂ X.

Let x ∈ U and define
x̃ := (x0, . . . , xn−1, t, xn+1, . . .).

For each y ∈ X with d(x̃, y) < ϵ
||vn||2n we have

|t− yvn | < ϵ.

This implies
Bd

ϵ
||vn||2n

(x̃) ⊂ U.

Because x ∈ U , we have x ∈ Bd
ϵ

||vn||2n
(x̃). Now x ∈ U was arbitrary which means we can

write U as a union of open balls in the metric topology. In particular, U is open in the metric
topology. Since such opens U generate the product topology, this means the metric topology
is finer than the product topology. On a gagné!

3. Consider the space
c0(N) := {f : N → R| lim

n→∞
= 0}

with the sup-norm. Identify c0(N)∗.
Solution: We have a continuous map

J : ℓ1(N) → c0(N)∗

J(ϕ)(f) :=
∑
n⩾0

ϕ(n)f(n).

Note that it is injective. If we prove that it is surjective, then the open mapping theorem
implies that it is an isomorphism of Banach spaces.
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Let Φ ∈ c0(N)∗ and define the function ϕ(n) := Φ(1{n}) for all n ∈ N. For each f ∈ c0(N) and
N ∈ N, we define the functions fN := f |{0,...,N}. Because limn→∞ f(n) = 0, we get fN → f
as N → ∞. This implies

Φ(f) = lim
N→∞

Φ(fN ) = lim
N→∞

Φ

( N∑
n=1

f(n)1{n}

)
=

∞∑
n=1

f(n)ϕ(n).

For N ⩾ 0, we define the function

gN (n) :=

{
sgn(ϕ(n)) if n ⩽ N

0 else

By the equality above, we get

Φ(gN ) = Φ

( N∑
i=0

gN (i)1{i}

)
=

N∑
n=0

|ϕ(n)|.

We have |Φ(gN )| ⩽ ||Φ||, so the monotone convergence theorem implies

∞∑
n=0

|ϕ(n)| < ∞.

This implies ϕ ∈ ℓ1(N) hence the above equality gives

Φ = J(ϕ).

4. Show that the canonical map ℓ1(N) → ℓ∞(N)∗ is not surjective.

Hint: Consider the sequence

λn : ℓ
∞(N) → R

λn(g) =
1

n

n∑
i=1

g(k).

Solution: Let
V := {f ∈ ℓ∞(N)| lim

n→∞
λn(f) exists}.

This is a subspace V ⊂ ℓ∞(N) which comes with the functional

λ(f) := lim
n→∞

λn(f).

By the Hahn-Banach theorem, there exists a functional Λ: ℓ∞(N) → R which extends λ and
satisfies |Λ(f)| ⩽ ||f || for each f ∈ ℓ∞(N). This means Λ is continuous.
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Suppose Λ lies in the image of the canonical map ℓ1(N) → ℓ∞(N)∗. Then there exists
F ∈ ℓ1(N) such that

Λ(f) =

∞∑
n=1

F (n)f(n).

Note that the indicator function 1{n} ∈ V for each n ∈ N. We get

0 = λ(1{n}) = Λ(1{n}) = F (n).

This implies Λ = 0 which is a contradiction to Λ(1) = λ(1) = 1.

5. Let E be a complex vector space. Formulate conditions on a subset A ⊂ E so that the
construction in Prop. VI. 6 leads to a seminorm on E.

Solution: Let A ⊂ E be a subset. We impose the following conditions on A :

(a) For all t ∈ [0, 1] and v, w ∈ A we have tv + (1− t)w ∈ A.

(b) 0 ∈ A

(c) For each v ∈ E there exists α ∈ R such that v ∈ λA for each λ ∈ R with λ ⩾ α.

(d) For all u ∈ C with |u| = 1 we have uA = A.

These conditions imply the conditions of Prop. VI.6 (when one regards R as a real vector
space), so the function

p(v) := inf{t > 0|v ∈ tA}

is well-defined and gives a gauge function. We have to prove p(λv) = |λ|p(v) for all λ ∈ C
with λ ̸= 0 and v ∈ E. Note that

λv ∈ tA ⇔ v ∈ λ−1tA ⇔ v ∈ |λ−1|tA ⇔ |λ|v ∈ tA

So we get
p(λv) = p(|λ|v) = |λ|p(v).
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