Functional Analysis I

Exercise Sheet 11

- 1. Let Γ be a group with a normal subgroup $N \lhd \Gamma$ such that N and Γ/N satisfy the conclusion of the Markov-Kakutani fixed point theorem. Show that it holds for Γ as well.
- 2. Show that if Γ has property (F) (Remark VI.24) then it satisfies the conclusions of the MK-fixed point theorem.
- 3. Determine the extreme points of $M^1([0,1])$.
- 4. Let $\varphi: [0,1] \to [0,1], \varphi(x) := x^2$; determine all the φ -invariant probability measures.
- 5. In Example VI.26 justify why for $\alpha \notin \mathbb{Q}/\mathbb{Z}$, λ is the unique T_{α} -invariant probability measure.
- 6. Let $T \in SL_2(\mathbb{R})$ with real eigenvalues $\{\lambda, \lambda^{-1}\}$ with $\lambda > 1$. Then T induces a homeomorphism of $\mathbb{P}^1(\mathbb{R})$ still denoted T. Classify all T-invariant probability measures on $\mathbb{P}^1(\mathbb{R})$. Prove that there exists no probability measure on $\mathbb{P}^1(\mathbb{R})$ which is invariant under $SL_2(\mathbb{Z})$.