Functional Analysis I

D-MATH Prof. Marc Burger

Exercise Sheet 11 - Solutions

1. Let Γ be a group with a normal subgroup $N \lhd \Gamma$ such that N and Γ/N satisfy the conclusion of the Markov-Kakutani fixed point theorem. Show that it holds for Γ as well.

Solution: Let V be a topological vector space generated by a sufficient family of seminorms with a continuous action by the discrete group Γ . Suppose $A \subset V$ is a convex, compact, non-empty and Γ -invariant subset. Define

$$A^N := \{ v \in A | gv = v \ \forall g \in N \}.$$

The MK-fixed point theorem says $A^N \neq \emptyset$. Note that for each $v \in A^N$, $g \in \Gamma$ and $h \in N$ we have

$$h(gv) = g((g^{-1}hg)v) = gv$$

because N is normal in Γ . This says that A^N is Γ -invariant. By definition, the subgroup N acts trivially on A^N , so the Γ -action on A^N factors through Γ/N . Moreover, A^N is closed in A (because N acts by continuous automorphisms) and convex. So the MK-fixed point theorem says that there is $v \in A^N$ such that gNv = g for all $gN \in \Gamma/N$. In particular, there is $v \in A$ such that gv = v for all $g \in \Gamma$.

2. Show that if Γ has property (F) (Remark VI.24) then it satisfies the conclusions of the MK-fixed point theorem.

Solution: Let $A \subset V$ be compact, convex, Γ -invariant, and non-empty. For each finite $F \subset \Gamma$ we define the map $T_F \colon A \to A$ by

$$T_F(v) := \frac{1}{|F|} \sum_{g \in F} gv$$

for all $v \in A$.

By property (F), there exists a sequence $(F_n)_n$ of subset of Γ with

$$\frac{|\gamma F_n \triangle F_n|}{|F_n|} \to 0$$

as $n \to \infty$. Let $v_0 \in A$. There exists a subsequence of $(T_{F_n}v_0)_n$ which converges to some $v \in A$ because A is compact. Let $|| \cdot ||$ be a continuous seminorm on V. Because A is compact there exists $C \ge 0$ with $||w|| \le C$ for all $w \in A$. For each $\gamma \in \Gamma$ we have

$$\begin{split} ||\gamma v - v|| &= \left| \left| \lim_{n \to \infty} \frac{1}{|F_n|} \sum_{g \in F_n} \gamma g v_0 - g v_0 \right| \right| \\ &\leqslant \lim_{n \to \infty} \frac{1}{|F_n|} \sum_{g \in \gamma F_n \triangle F_n} ||g v_0|| \\ &\leqslant \lim_{n \to \infty} \frac{C |\gamma F_n \triangle F_n|}{|F_n|} = 0. \end{split}$$

Functional Analysis I

D-MATH Prof. Marc Burger

3. Determine the extreme points of $M^1([0,1])$.

Solution: Let μ be an extreme point of $M^1([0,1])$. Suppose the support of μ is not a point. There exists a decomposition $[0,1] = [0,t) \sqcup [t,1]$ such that $\mu|_{[0,t)} \neq 0$ and $\mu|_{[t,1]} \neq 0$. We can write

$$\mu = \mu([0,t))\frac{\mu|_{[0,t)}}{\mu([0,t)} + \mu([t,1])\frac{\mu|_{[t,1]}}{\mu([t,1])}.$$

This is a contradiction to μ being an extreme point. Therefore the support of μ is a point and μ is a Dirac measure.

Let $x \in [0, 1]$ and consider the Dirac measure δ_x supported at x. Suppose there exist $\mu_1, \mu_2 \in M^1([0, 1])$ and $t_1, t_2 \in (0, 1)$ with $t_1 + t_2 = 1$ and

$$\delta_x = t_1 \mu_1 + t_2 \mu_2.$$

Let $U \subset [0,1]$ be an open subset such that $x \notin U$. Then

$$0 = \delta_x(U) = t_1 \mu_1(U) + t_2 \mu_2(U).$$

This implies $\mu_1(U) = \mu_2(U) = 0$ because $t_i \neq 0$. This says μ_1 and μ_2 are supported at x and hence $\mu_1 = \mu_2 = \delta_x$.

4. Let $\varphi: [0,1] \to [0,1], \varphi(x) := x^2$; determine all the φ -invariant probability measures.

Solution: Let μ be a φ -invariant probability measure. For each $t \in (0, 1)$ define $I_t := (0, t)$. Note that $\varphi(I_t) = I_{t^2}$, so we get

$$\mu(I_t) = \mu(I_{t^{2^n}})$$

for each $n \ge 1$. The dominated convergence theorem implies that, as $n \to \infty$, this equality converges to

$$\mu(I_t) = 0$$

for each $t \in (0, 1)$. Thus $\mu = t_0 \delta_0 + t_1 \delta_1$ where δ_0 and δ_1 are the Dirac measures supported at 0 and 1 respectively and $t_0 + t_1 = 1$.

5. In Example VI. 26 justify why for $\alpha \notin \mathbb{Q}/\mathbb{Z}$, λ is the unique T_{α} -invariant probability measure. Solution: Let μ be a T_{α} -invariant probability measure. Define

$$T_m(f)(x) := \frac{1}{m} \sum_{k=0}^{m-1} f(x+k\alpha)$$

for each $m \ge 1$ and $f \in C(S^1)$. Then

$$\int f d\mu = \int T_m f d\mu$$

for all $f \in C(S^1)$ and $m \ge 1$ because μ is T_{α} -invariant. Define $\varphi_n(x) := e^{2\pi i n x}$ for each $n \in \mathbb{Z}$. Because $\alpha \notin \mathbb{Q}/\mathbb{Z}$, we have

$$T_m(\varphi_n)(x) = \frac{\varphi_n(x)(e^{2\pi i n\alpha m} - 1)}{m(e^{2\pi i n\alpha} - 1)}$$

D-MATH Prof. Marc Burger Functional Analysis I

for all $n \neq 0$. This implies $T_m(\varphi_n) \to 0$ as $m \to \infty$ and, therefore,

$$\int_{S^1} \varphi_n d\mu = 0$$

for $n \neq 0$. Let $f \in C^{\infty}(S^1)$ then we can write for each $x \in S^1$

$$f(x) = \sum_{n \in \mathbb{Z}} \hat{f}(n) \varphi_n(x).$$

Because f is smooth the Fourier series converges pointwise. Because S^1 is compact we get that the Fourier series converges uniformly. Thus dominated convergence implies

$$\int_{S^1} f d\mu = \int_{S^1} \sum_{n \in \mathbb{Z}} \hat{f}(n) \varphi_n(x) d\mu(x) = \sum_{n \in \mathbb{Z}} \int_{S^1} \hat{f}(n) \varphi_n(x) d\mu(x) = \hat{f}(0) \int_{S^1} d\mu = \hat{f}(0).$$

The smooth functions are dense in the space of continuous functions (convolve with a smooth bump function), so this determines $\mu = \lambda$.

6. Let $T \in SL_2(\mathbb{R})$ with real eigenvalues $\{\lambda, \lambda^{-1}\}$ with $\lambda > 1$. Then T induces a homeomorphism of $\mathbb{P}^1(\mathbb{R})$ still denoted T. Classify all T-invariant probability measures on $\mathbb{P}^1(\mathbb{R})$. Prove that there exists no probability measure on $\mathbb{P}^1(\mathbb{R})$ which is invariant under $SL_2(\mathbb{Z})$.

Solution: There is $Q \in SL_2(\mathbb{R})$ with $QTQ^{-1} = \operatorname{diag}(\lambda^{-1}, \lambda)$. We begin by determining the $S := \operatorname{diag}(\lambda, \lambda^{-1})$ -invariant probability measures. We denote by $\mathbb{P}^1(\mathbb{R})$ the set of lines in \mathbb{R}^2 . This space is diffeomorphic to the quotient

$$(\mathbb{R}^2 \setminus \{0\}) / \mathbb{R}^* \xrightarrow{\sim} \mathbb{P}^1(\mathbb{R})$$

via the map which sends v to $v\mathbb{R}$ (by definition). This diffemorphism provides the homogeneous coordinates for $\mathbb{P}^1(\mathbb{R})$ where $[x : y] \in \mathbb{P}^1(\mathbb{R})$ denotes the line $(x, y)\mathbb{R}$ i.e. the line passing through (x, y). This space is compact because the inclusion $S^1 \to \mathbb{R}^2 \setminus \{0\}$ induces a continuous surjection

$$S^1 \twoheadrightarrow \mathbb{R}^2 \setminus \{0\}$$

Let μ be a S-invariant probability measure. For each $0 \leq t < \infty$ we define the two subset

$$I_t^+ := \{ [1:s] | s \in [0,t) \}$$
$$I_t^- := \{ [-1:s] | s \in [0,t) \}.$$

We have $S(I_t^{\pm}) = I_{\lambda^2 t}^{\pm}$ for all $0 \leq t \leq \infty$. This implies

$$\mu(I_t^{\pm}) = \mu(I_0^{\pm})$$

for all $0 \le t \le \infty$. In particular, the measure μ is supported at the two points [1, 0] and [0, 1]. These two points are fixed by S, so all the S-invariant probability measures are probability measures supported at these two points.

Let μ be a *T*-invariant probability measure. The pullback $Q^*\mu$ is *S*-invariant, so it is supported at the two fixed points of *S*. This means μ is supported at the two fixed points of *T* (the eigenvectors). Any probability measure supported at these two points is automatically *T*-invariant, so these are all the *T*-invariant probability measures.