Exercise Sheet 12 - Solutions

1. Let $G \times X \rightarrow X$ be a countable group G acting on a compact Hausdorff space X by homeomorphisms. Show that the set $M^{1}(X)^{G}$ of G-invariant probability measures on X is a weak*-closed, convex subset of $M^{1}(X)$.
Solution: Let $\mu_{1}, \mu_{2} \in M^{1}(X)^{G}$ and $t_{1}+t_{2}=1$. Then

$$
t_{1} \mu_{1}(X)+t_{2} \mu_{2}(X)=t_{1}+t_{2}=1
$$

so $t_{1} \mu_{1}+t_{2} \mu_{2}$ is a probability measure.
Let $\left(\mu_{n}\right)_{n} \in M^{1}(X)^{G}$ be a sequence converging to $\mu \in M^{1}(X)$ in the weak*-topology. In other words, for each $f \in C(X)$ we have

$$
\lim _{n \rightarrow \infty} \int_{X} f(x) d \mu_{n}(x)=\int_{X} f(x) d \mu(x)
$$

Let $g \in G$, then for each $f \in C(X)$

$$
\begin{aligned}
\int_{X} f(g x) d \mu(x) & =\lim _{n \rightarrow \infty} \int_{X} f(g x) d \mu_{n}(x) \\
& =\lim _{n \rightarrow \infty} \int_{X} f(x) d \mu_{n}(x) \\
& =\int_{X} f(x) d \mu(x)
\end{aligned}
$$

2. Let (X, d) be a compact metric space and $\left(f_{n}\right)_{n}$ be a sequence of continuous functions converging pointwise to a continuous function $g: X \rightarrow \mathbb{R}$. Assume

$$
f_{n}(x) \leqslant f_{n+1}(x) \leqslant g(x)
$$

for all $n \geqslant 1$ and $x \in X$. Prove that $\left(f_{n}\right)_{n}$ converges uniformly to g.
Solution: Define

$$
e_{n}:=\max _{x \in X}\left(g(x)-f_{n}(x)\right)
$$

If we can prove $\lim _{n \rightarrow \infty} e_{n}=0$ then f_{n} converges uniformly to g. Suppose

$$
\lim _{n \rightarrow \infty} e_{n}=e>0
$$

There exists a sequence $\left(x_{n}\right)_{n} \in X$ such that $g(x)-f_{n}(x) \geqslant e$ for each $n \geqslant 1$. Because X is compact, there exists a subsequence $\left(x_{n_{k}}\right)_{k}$ which converges to some $x_{0} \in X$. The pointwise convergence at x_{0} implies that there is an open neighbourhood $x_{0} \in U$ and $N \geqslant 1$ with

$$
g(x)-f_{n}(x)<e_{0}
$$

for all $n \geqslant N$ and $x \in U_{0}$. But this contradicts $x_{n_{k}} \in U$ for large enough k.
3. Prove Lemma VII.6.

Solution: Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\xi, y \in \mathbb{R}^{n}$. Integration by substitution implies

$$
\begin{aligned}
(\lambda(y) f)^{\wedge}(\xi) & =\int_{\mathbb{R}^{n}}(\lambda(y) f)(x) e^{-i\langle x, \xi\rangle} d x \\
& =\int_{\mathbb{R}^{n}} f(x-y) e^{-i\langle x, \xi\rangle} d x \\
& =\int_{\mathbb{R}^{n}} f(x) e^{-i\langle x+y, \xi\rangle} d x=e^{-i\langle y, \xi\rangle} \widehat{f}(\xi)
\end{aligned}
$$

Using the same notation as before we get

$$
\begin{aligned}
(\lambda(y) \widehat{f})(\xi) & =\widehat{f}(\xi+y) \\
& =\int_{\mathbb{R}^{n}} f(x) e^{-i\langle x, \xi+y\rangle} d x \\
& =\int_{\mathbb{R}^{n}}\left(e^{-i\langle x, y\rangle} f(x)\right) e^{-i\langle x, \xi\rangle} d x=\left(e^{-i\langle-, y\rangle} f\right)^{\wedge}(\xi)
\end{aligned}
$$

Let $a \neq 0$ then integration by substitution implies

$$
\begin{aligned}
\left(\delta_{a} f\right)(\xi) & =\int_{\mathbb{R}^{n}}\left(\delta_{a} f\right)(x) e^{-i\langle x, \xi\rangle} d x \\
& =\int_{\mathbb{R}^{n}} f(x / a) e^{-i\langle x+y, \xi\rangle} d x \\
& =|a|^{n} \int_{\mathbb{R}^{n}} f(x) e^{-i\langle a x, \xi\rangle} d x=|a|^{n} \delta_{1 / a} \widehat{f}(\xi)
\end{aligned}
$$

By integration by substitution, we get

$$
\begin{aligned}
\left(\delta_{a} \widehat{f}\right) & =\widehat{f}(\xi / a) \\
& =\int_{\mathbb{R}^{n}} f(x) e^{-i\langle x, \xi / a\rangle} d x \\
& =|a|^{n} \int_{\mathbb{R}^{n}} f(a x) e^{-i\langle x, \xi\rangle} d x=|a|^{n}\left(\delta_{1 / a} f\right)^{\wedge}(\xi)
\end{aligned}
$$

