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Exercise Sheet 13 - Solutions

1. Prove Lemma VII. 13.

Solution: Let T : D → B2 be a bounded map and v ∈ D. Pick a constant C > 0 such that
||Tw||2 ⩽ C||w||1 for all w ∈ D. There exists a sequence (vn)n ∈ D which converges to v.

We put
Text(v) := lim

n→∞
Tvn.

The limit exists because the sequence (Tvn)n is Cauchy. This follows from the inequality

||Tvn − Tvm||2 ⩽ C||vn − vm||1.

Let (v′n)n ∈ D be a sequence with limit v. Continuity of addition implies

lim
n→∞

Tvn − lim
n→∞

Tv′n = lim
n→∞

(
Tvn − Tv′n

)
.

Hence ∣∣∣∣∣∣ lim
n→∞

Tvn − lim
n→∞

Tv′n

∣∣∣∣∣∣
2
⩽ C lim

n→∞
||vn − v′n||.

Applying addition of continuity again implies limn→∞ vn − v′n = 0. This proves that Text(v)
does not depend on the chosen sequence (vn)n. Note that Text extends T because for any
v ∈ D the sequence (v)n converges to v and (Tv)n converges to Tv.

Suppose T ′ : D → B2 is a continuous extension of T . Then

T ′(v) = T ′
(

lim
n→∞

vn

)
= lim

n→∞
T ′vn lim

n→∞
Tvn = Text(vn).

This implies T ′ = Text, so the extension is unique.

Suppose ||Tw||2 = ||w||1 for all w ∈ D. Then

||Text(v)||2 = || lim
n→∞

Tvn||2 = lim
n→∞

||Tvn||2 = lim
n→∞

||vn||1 = ||v||1.

2. Prove Lemma VII.17.

Solution: Let x ∈ D and 1 ⩽ i ⩽ n. The space D equipped with the restriction of the
Lebesgue measure is σ-finite because D is second-countable and locally compact. Set ei to
be the i’th vector in the standard basis. Fubini’s theorem and the fundamental theorem of
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calculus imply

∂F

∂xi
(x) = lim

ϵ→0

F (x+ ϵei)− F (x)

ϵ

= lim
ϵ→0

∫
Y

f(x+ ϵei, y)− f(x, y)

ϵ
dµ(y)

= lim
ϵ→0

1

ϵ

∫
Y

∫ ϵ

0

∂f

∂xi
(x+ tei, y)dtdµ(y)

= lim
ϵ→0

∫ ϵ

0

1

ϵ

∫
Y

∂f

∂xi
(x+ tei, y)dµ(y)dt

= lim
ϵ→∞

1

ϵ

∫ ϵ

0

Gi(x+ tei)dt.

Because Gi is continuous, the limit on the last line converges to Gi(x). The index i was
arbitrary, so the gradient ∇F exists and is continuous because Gi is continuous. Thus
F ∈ C1(D).

3. Prove the following formulae for all f1, f2, f3 ∈ L1(Rn)

f1 ∗ f2 = f2 ∗ f1,
(f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3).

Solution: Integration by substitution implies for all x ∈ Rn and f1, f2 ∈ L1(Rn)

f1 ∗ f2(x) =
∫
Rn

f1(x− y)f2(y)dy =

∫
Rn

f1(y)f2(x− y)dy = f2 ∗ f1(x).

Let f, g, h ∈ L1(Rn). Integration by substitution gives for all x ∈ Rn

((f ∗ g) ∗ h)(x) =
∫
Rn

(f ∗ g)(x− y)h(y)dy =

∫
Rn

∫
Rn

f(x− y − z)g(z)h(y)dzdy.

Prop. VII. 15 allows us to apply Fubini’s theorem for almost all x ∈ Rn to the above equality.
This gives

((f ∗ g) ∗ h)(x) =
∫
Rn

∫
Rn

f(x− y − z)g(z)h(y)dydz = ((f ∗ h) ∗ g)(x).

This means we get (f ∗ g) ∗ h = (f ∗ h) ∗ g. We combine these formulae to get

(f1 ∗ f2) ∗ f3 = (f2 ∗ f1) ∗ f3 = (f2 ∗ f3) ∗ f1 = f1 ∗ (f2 ∗ f3)

for all f1, f2, f3 ∈ L1(Rn).

4. Let || · ||2,k be a Sobolev norm on W 2,k(Rn). Show that

||f || := ||(1 + ||ξ||k)f̂ ||L2

2



D-MATH
Prof. Marc Burger

Functional Analysis I HS 2023

defines a norm for f ∈ W 2,k(Rn) and that the norms || · || and || · ||2,k are equivalent on
W 2,k(Rn).

Solution: The argument is based on the Plancherel formula. Let f ∈ W 2,k(Rn). Remark
that for each each multiindex α with |α| ⩽ k Lemma VII. 32 and the Plancherel formula
imply

||∂αf ||2 = ||ξαf̂ ||2.
This implies that ||f || is well-defined. On the one hand, we estimate

||f || = ||(1 + ||ξ||k)f̂ ||2

⩽ ||f ||2 +
(∫

Rn

n∑
i=1

|ξi|2k|f̂(ξ)|2dξ
)1/2

= ||f ||2 +
( n∑

i=1

((∫
Rn

|ξki f̂(ξ)|2dξ
)1/2)2)1/2

= ||f ||2 +
( n∑

i=1

∣∣∣∣∣∣∣∣∂kf

∂xk
i

∣∣∣∣∣∣∣∣2
2

)1/2

For each vector x ∈ Rn, we have ||x|| ≲ ||x||1 because all norms are equivalent. We can apply
this to the above inequality to get

||f || ≲ ||f ||2 +
n∑

i=1

∣∣∣∣∣∣∣∣∂kf

∂xk
i

∣∣∣∣∣∣∣∣
2

⩽ ||f ||2,k.

To get the inequality equality in the other direction requires more work. We have

||f ||2,k =
∑
|α|⩽k

||∂αf ||2 =
∑
|α|⩽k

||ξαf̂ ||2

=
∑
|α|⩽k

(∫
Rn

|ξαf̂(ξ)|2dξ
)1/2

The AM-GM inequality implies

x
1/2
1 + · · ·+ x1/2

n ⩽
√
n(x1 + · · ·+ xn)

1/2

for all x1, . . . , xn ⩾ 0 (square the inequality). In particular, we get

||f ||2,k ≲

( ∑
|α|⩽k

∫
Rn

|ξαf̂(ξ)|2dξ
)1/2

Later, we will prove the inequality∑
|α|⩽k

|ξα|2 ≲ (1 + ||ξ||k)2

3



D-MATH
Prof. Marc Burger

Functional Analysis I HS 2023

for all ξ ∈ Rn. We can plug this into the above inequality to get

||f ||2,k ≲

(∫
Rn

|(1 + ||ξ||k)f̂(ξ)|2dξ
)1/2

= ||f ||.

We now turn to proving ∑
|α|⩽k

|ξα|2 ≲ (1 + ||ξ||k)2.

Note that ∑
|α|⩽k

|ξα|2 ⩽

( ∑
|α|⩽k

|ξα|
)2

,

so it suffices to prove ∑
|α|⩽k

|ξα| ≲ 1 + ||ξ||k.

The right-hand side of this inequality does not vanish and both sides are continuous, so it
suffices to prove the inequality for ||ξ|| ≫ 1. The binomial theorem implies∑

|α|=i

|ξα| ⩽ ||ξ||i1

for all i ⩾ 0. If ||ξ||1 > 1 then

∑
|α|⩽k

|ξα| ≲
k∑

i=0

||ξ||i1 =
||ξ||k+1

1 − 1

||ξ||1 − 1
≲ ||ξ||k1 ≲ ||ξ||k.

5. Let

∆ :=

n∑
i=1

∂2

∂x2
i

be the Laplacian on Rn. Show that ∆− id : C2
00(Rn) → C2

00(Rn) extends to an isomorphism
of Hilbert spaces W 2,k(Rn) → W 2,k−2(Rn) for all k ⩾ 2.

Solution: Let k ⩾ 2. Lemma VII. 32 implies

((1−∆)f)∧(ξ) = (1 + ||ξ||2)f̂(ξ)

for all f ∈ W 2,k(Rn) and ξ ∈ Rn. Note

1 + ||ξ||k ≲ (1 + ||ξ||2)k/2 ≲ 1 + ||ξ||k

for all ξ ∈ Rn. This follows from

lim
x→+∞

1 + x2

(1 + x)2
= 1
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. In particular, Exercise 4 implies that we can define the norm

||f ||(k) := ||(1 + ||ξ||2)k/2f̂ ||2

for all f ∈ W 2,k(Rn) and this norm is equivalent to the Sobolev norm. The first remark
implies

||(1−∆)f ||(k−2) = ||f ||(k).

This implies that 1−∆ is injective.

Let f ∈ W 2,k−2(Rn). Define

F :=

(
f̂

1 + ||ξ||2

)∨

.

This is well-defined because ∣∣∣∣∣∣∣∣ f̂

1 + ||ξ||2

∣∣∣∣∣∣∣∣
2

⩽ ||f̂ ||2.

If we can prove F ∈ W 2,k(Rn), then Lemma VII. 32 implies (1 − ∆)F = f. In particular,
1−∆ is surjective and hence an isomorphism (by the open mapping theorem).

We begin by proving the following claim: Let g ∈ L2(Rn) and α ∈ Nn such that ξαĝ ∈ L2(Rn).
Then ((−iξ)αĝ)∨ = ∂αg. Indeed, let φ ∈ C∞

00 (Rn) be a test function. The Plancherel formula
(Theorem VII. 12) and Proposition VII. 5 imply∫

Rn

g(x)∂αφ(x)dx =

∫
Rn

ĝ(ξ)(iξ)αφ̂(ξ)dξ

=

∫
Rn

(iξ)αĝ(ξ)φ̂(ξ)dξ

=

∫
Rn

((iξ)αĝ)∨(x)(φ̂)∨(x)dx

= (−1)|α|
∫
Rn

((−iξ)αĝ)∨(x)φ(x)dx.

This implies the claim by definition of a weak derivative.

Let g : Rn → C be a measurable function. One can modify the proof of Exercise 4 with the
claim so that it implies g ∈ W 2,k(Rn) if and only if ||g|| < ∞. Using the inequality at the
beginning, this is satisfied if and only if ||g||(k) < ∞. Finally, we are in a position to prove

F ∈ W 2,k(Rn) because Fourier inversion implies

||F ||(k) = ||f ||(k−2).

The term on the right is finite because f ∈ W 2,k−2(Rn).
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