Exercise Sheet 13 - Solutions

1. Prove Lemma VII. 13.

Solution: Let $T: D \rightarrow B_{2}$ be a bounded map and $v \in \bar{D}$. Pick a constant $C>0$ such that $\|T w\|_{2} \leqslant C\|w\|_{1}$ for all $w \in D$. There exists a sequence $\left(v_{n}\right)_{n} \in D$ which converges to v.
We put

$$
T_{\mathrm{ext}}(v):=\lim _{n \rightarrow \infty} T v_{n}
$$

The limit exists because the sequence $\left(T v_{n}\right)_{n}$ is Cauchy. This follows from the inequality

$$
\left\|T v_{n}-T v_{m}\right\|_{2} \leqslant C\left\|v_{n}-v_{m}\right\|_{1}
$$

Let $\left(v_{n}^{\prime}\right)_{n} \in D$ be a sequence with limit v. Continuity of addition implies

$$
\lim _{n \rightarrow \infty} T v_{n}-\lim _{n \rightarrow \infty} T v_{n}^{\prime}=\lim _{n \rightarrow \infty}\left(T v_{n}-T v_{n}^{\prime}\right)
$$

Hence

$$
\left\|\lim _{n \rightarrow \infty} T v_{n}-\lim _{n \rightarrow \infty} T v_{n}^{\prime}\right\|_{2} \leqslant C \lim _{n \rightarrow \infty}\left\|v_{n}-v_{n}^{\prime}\right\|
$$

Applying addition of continuity again implies $\lim _{n \rightarrow \infty} v_{n}-v_{n}^{\prime}=0$. This proves that $T_{\text {ext }}(v)$ does not depend on the chosen sequence $\left(v_{n}\right)_{n}$. Note that $T_{\text {ext }}$ extends T because for any $v \in D$ the sequence $(v)_{n}$ converges to v and $(T v)_{n}$ converges to $T v$.
Suppose $T^{\prime}: \bar{D} \rightarrow B_{2}$ is a continuous extension of T. Then

$$
T^{\prime}(v)=T^{\prime}\left(\lim _{n \rightarrow \infty} v_{n}\right)=\lim _{n \rightarrow \infty} T^{\prime} v_{n} \lim _{n \rightarrow \infty} T v_{n}=T_{\mathrm{ext}}\left(v_{n}\right)
$$

This implies $T^{\prime}=T_{\text {ext }}$, so the extension is unique.
Suppose $\|T w\|_{2}=\|w\|_{1}$ for all $w \in D$. Then

$$
\left\|T_{\text {ext }}(v)\right\|_{2}=\left\|\lim _{n \rightarrow \infty} T v_{n}\right\|_{2}=\lim _{n \rightarrow \infty}\left\|T v_{n}\right\|_{2}=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{1}=\|v\|_{1}
$$

2. Prove Lemma VII. 17.

Solution: Let $x \in D$ and $1 \leqslant i \leqslant n$. The space D equipped with the restriction of the Lebesgue measure is σ-finite because D is second-countable and locally compact. Set e_{i} to be the i 'th vector in the standard basis. Fubini's theorem and the fundamental theorem of
calculus imply

$$
\begin{aligned}
\frac{\partial F}{\partial x_{i}}(x) & =\lim _{\epsilon \rightarrow 0} \frac{F\left(x+\epsilon e_{i}\right)-F(x)}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \int_{Y} \frac{f\left(x+\epsilon e_{i}, y\right)-f(x, y)}{\epsilon} d \mu(y) \\
& =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{Y} \int_{0}^{\epsilon} \frac{\partial f}{\partial x_{i}}\left(x+t e_{i}, y\right) d t d \mu(y) \\
& =\lim _{\epsilon \rightarrow 0} \int_{0}^{\epsilon} \frac{1}{\epsilon} \int_{Y} \frac{\partial f}{\partial x_{i}}\left(x+t e_{i}, y\right) d \mu(y) d t \\
& =\lim _{\epsilon \rightarrow \infty} \frac{1}{\epsilon} \int_{0}^{\epsilon} G_{i}\left(x+t e_{i}\right) d t .
\end{aligned}
$$

Because G_{i} is continuous, the limit on the last line converges to $G_{i}(x)$. The index i was arbitrary, so the gradient ∇F exists and is continuous because G_{i} is continuous. Thus $F \in C^{1}(D)$.
3. Prove the following formulae for all $f_{1}, f_{2}, f_{3} \in L^{1}\left(\mathbb{R}^{n}\right)$

$$
\begin{aligned}
f_{1} * f_{2} & =f_{2} * f_{1} \\
\left(f_{1} * f_{2}\right) * f_{3} & =f_{1} *\left(f_{2} * f_{3}\right)
\end{aligned}
$$

Solution: Integration by substitution implies for all $x \in \mathbb{R}^{n}$ and $f_{1}, f_{2} \in L^{1}\left(\mathbb{R}^{n}\right)$

$$
f_{1} * f_{2}(x)=\int_{\mathbb{R}^{n}} f_{1}(x-y) f_{2}(y) d y=\int_{\mathbb{R}^{n}} f_{1}(y) f_{2}(x-y) d y=f_{2} * f_{1}(x)
$$

Let $f, g, h \in L^{1}\left(\mathbb{R}^{n}\right)$. Integration by substitution gives for all $x \in \mathbb{R}^{n}$

$$
((f * g) * h)(x)=\int_{\mathbb{R}^{n}}(f * g)(x-y) h(y) d y=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x-y-z) g(z) h(y) d z d y
$$

Prop. VII. 15 allows us to apply Fubini's theorem for almost all $x \in \mathbb{R}^{n}$ to the above equality. This gives

$$
((f * g) * h)(x)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x-y-z) g(z) h(y) d y d z=((f * h) * g)(x)
$$

This means we get $(f * g) * h=(f * h) * g$. We combine these formulae to get

$$
\left(f_{1} * f_{2}\right) * f_{3}=\left(f_{2} * f_{1}\right) * f_{3}=\left(f_{2} * f_{3}\right) * f_{1}=f_{1} *\left(f_{2} * f_{3}\right)
$$

for all $f_{1}, f_{2}, f_{3} \in L^{1}\left(\mathbb{R}^{n}\right)$.
4. Let $\|\cdot\|_{2, k}$ be a Sobolev norm on $W^{2, k}\left(\mathbb{R}^{n}\right)$. Show that

$$
\|f\|:=\left\|\left(1+\|\xi\|^{k}\right) \hat{f}\right\|_{L^{2}}
$$

defines a norm for $f \in W^{2, k}\left(\mathbb{R}^{n}\right)$ and that the norms $\|\cdot\|$ and $\|\cdot\|_{2, k}$ are equivalent on $W^{2, k}\left(\mathbb{R}^{n}\right)$.
Solution: The argument is based on the Plancherel formula. Let $f \in W^{2, k}\left(\mathbb{R}^{n}\right)$. Remark that for each each multiindex α with $|\alpha| \leqslant k$ Lemma VII. 32 and the Plancherel formula imply

$$
\left\|\partial^{\alpha} f\right\|_{2}=\left\|\xi^{\alpha} \widehat{f}\right\|_{2}
$$

This implies that $\|f\|$ is well-defined. On the one hand, we estimate

$$
\begin{aligned}
\|f\| & =\left\|\left(1+\|\xi\|^{k}\right) \widehat{f}\right\|_{2} \\
& \leqslant\|f\|_{2}+\left(\int_{\mathbb{R}^{n}} \sum_{i=1}^{n}\left|\xi_{i}\right|^{2 k}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2} \\
& =\|f\|_{2}+\left(\sum_{i=1}^{n}\left(\left(\int_{\mathbb{R}^{n}}\left|\xi_{i}^{k} \widehat{f}(\xi)\right|^{2} d \xi\right)^{1 / 2}\right)^{2}\right)^{1 / 2} \\
& =\|f\|_{2}+\left(\sum_{i=1}^{n}\left\|\frac{\partial^{k} f}{\partial x_{i}^{k}}\right\|_{2}^{2}\right)^{1 / 2}
\end{aligned}
$$

For each vector $x \in \mathbb{R}^{n}$, we have $\|x\| \lesssim\|x\|_{1}$ because all norms are equivalent. We can apply this to the above inequality to get

$$
\|f\| \lesssim\|f\|_{2}+\sum_{i=1}^{n}\left\|\frac{\partial^{k} f}{\partial x_{i}^{k}}\right\|\left\|_{2} \leqslant\right\| f \|_{2, k}
$$

To get the inequality equality in the other direction requires more work. We have

$$
\begin{aligned}
\|f\|_{2, k} & =\sum_{|\alpha| \leqslant k}\left\|\partial^{\alpha} f\right\|_{2}=\sum_{|\alpha| \leqslant k}\left\|\xi^{\alpha} \widehat{f}\right\|_{2} \\
& =\sum_{|\alpha| \leqslant k}\left(\int_{\mathbb{R}^{n}}\left|\xi^{\alpha} \widehat{f}(\xi)\right|^{2} d \xi\right)^{1 / 2}
\end{aligned}
$$

The AM-GM inequality implies

$$
x_{1}^{1 / 2}+\cdots+x_{n}^{1 / 2} \leqslant \sqrt{n}\left(x_{1}+\cdots+x_{n}\right)^{1 / 2}
$$

for all $x_{1}, \ldots, x_{n} \geqslant 0$ (square the inequality). In particular, we get

$$
\|f\|_{2, k} \lesssim\left(\sum_{|\alpha| \leqslant k} \int_{\mathbb{R}^{n}}\left|\xi^{\alpha} \widehat{f}(\xi)\right|^{2} d \xi\right)^{1 / 2}
$$

Later, we will prove the inequality

$$
\sum_{|\alpha| \leqslant k}\left|\xi^{\alpha}\right|^{2} \lesssim\left(1+\|\xi\|^{k}\right)^{2}
$$

for all $\xi \in \mathbb{R}^{n}$. We can plug this into the above inequality to get

$$
\|f\|_{2, k} \lesssim\left(\int_{\mathbb{R}^{n}}\left|\left(1+\|\xi\|^{k}\right) \widehat{f}(\xi)\right|^{2} d \xi\right)^{1 / 2}=\|f\|
$$

We now turn to proving

$$
\sum_{|\alpha| \leqslant k}\left|\xi^{\alpha}\right|^{2} \lesssim\left(1+\|\xi\|^{k}\right)^{2}
$$

Note that

$$
\sum_{|\alpha| \leqslant k}\left|\xi^{\alpha}\right|^{2} \leqslant\left(\sum_{|\alpha| \leqslant k}\left|\xi^{\alpha}\right|\right)^{2}
$$

so it suffices to prove

$$
\sum_{|\alpha| \leqslant k}\left|\xi^{\alpha}\right| \lesssim 1+\|\xi\|^{k}
$$

The right-hand side of this inequality does not vanish and both sides are continuous, so it suffices to prove the inequality for $\|\xi\| \gg 1$. The binomial theorem implies

$$
\sum_{|\alpha|=i}\left|\xi^{\alpha}\right| \leqslant\|\xi\|_{1}^{i}
$$

for all $i \geqslant 0$. If $\|\xi\|_{1}>1$ then

$$
\sum_{|\alpha| \leqslant k}\left|\xi^{\alpha}\right| \lesssim \sum_{i=0}^{k}\|\xi\|_{1}^{i}=\frac{\|\xi\|_{1}^{k+1}-1}{\|\xi\|_{1}-1} \lesssim\|\xi\|_{1}^{k} \lesssim\|\xi\|^{k}
$$

5. Let

$$
\Delta:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

be the Laplacian on \mathbb{R}^{n}. Show that Δ-id: $C_{00}^{2}\left(\mathbb{R}^{n}\right) \rightarrow C_{00}^{2}\left(\mathbb{R}^{n}\right)$ extends to an isomorphism of Hilbert spaces $W^{2, k}\left(\mathbb{R}^{n}\right) \rightarrow W^{2, k-2}\left(\mathbb{R}^{n}\right)$ for all $k \geqslant 2$.
Solution: Let $k \geqslant 2$. Lemma VII. 32 implies

$$
((1-\Delta) f)^{\wedge}(\xi)=\left(1+\|\xi\|^{2}\right) \widehat{f}(\xi)
$$

for all $f \in W^{2, k}\left(\mathbb{R}^{n}\right)$ and $\xi \in \mathbb{R}^{n}$. Note

$$
1+\|\xi\|^{k} \lesssim\left(1+\|\xi\|^{2}\right)^{k / 2} \lesssim 1+\|\xi\|^{k}
$$

for all $\xi \in \mathbb{R}^{n}$. This follows from

$$
\lim _{x \rightarrow+\infty} \frac{1+x^{2}}{(1+x)^{2}}=1
$$

. In particular, Exercise 4 implies that we can define the norm

$$
\|f\|_{(k)}:=\left\|\left(1+\|\xi\|^{2}\right)^{k / 2} \widehat{f}\right\|_{2}
$$

for all $f \in W^{2, k}\left(\mathbb{R}^{n}\right)$ and this norm is equivalent to the Sobolev norm. The first remark implies

$$
\|(1-\Delta) f\|_{(k-2)}=\|f\|_{(k)}
$$

This implies that $1-\Delta$ is injective.
Let $f \in W^{2, k-2}\left(\mathbb{R}^{n}\right)$. Define

$$
F:=\left(\frac{\widehat{f}}{1+\|\xi\|^{2}}\right)^{\vee}
$$

This is well-defined because

$$
\left\|\frac{\widehat{f}}{1+\|\xi\|^{2}}\right\|_{2} \leqslant\|\widehat{f}\|_{2}
$$

If we can prove $F \in W^{2, k}\left(\mathbb{R}^{n}\right)$, then Lemma VII. 32 implies $(1-\Delta) F=f$. In particular, $1-\Delta$ is surjective and hence an isomorphism (by the open mapping theorem).
We begin by proving the following claim: Let $g \in L^{2}\left(\mathbb{R}^{n}\right)$ and $\alpha \in \mathbb{N}^{n}$ such that $\xi^{\alpha} \widehat{g} \in L^{2}\left(\mathbb{R}^{n}\right)$. Then $\left((-i \xi)^{\alpha} \widehat{g}\right)^{\vee}=\partial^{\alpha} g$. Indeed, let $\varphi \in C_{00}^{\infty}\left(\mathbb{R}^{n}\right)$ be a test function. The Plancherel formula (Theorem VII. 12) and Proposition VII. 5 imply

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} g(x) \overline{\partial^{\alpha} \varphi(x)} d x & =\int_{\mathbb{R}^{n}} \widehat{g}(\xi)(i \xi)^{\alpha} \overline{\widehat{\varphi}(\xi)} d \xi \\
& =\int_{\mathbb{R}^{n}}(i \xi)^{\alpha} \widehat{g}(\xi) \overline{\widehat{\varphi}(\xi)} d \xi \\
& =\int_{\mathbb{R}^{n}}\left((i \xi)^{\alpha} \widehat{g}\right)^{\vee}(x) \overline{(\widehat{\varphi})^{\vee}(x)} d x \\
& =(-1)^{|\alpha|} \int_{\mathbb{R}^{n}}\left((-i \xi)^{\alpha} \widehat{g}\right)^{\vee}(x) \overline{\varphi(x)} d x
\end{aligned}
$$

This implies the claim by definition of a weak derivative.
Let $g: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be a measurable function. One can modify the proof of Exercise 4 with the claim so that it implies $g \in W^{2, k}\left(\mathbb{R}^{n}\right)$ if and only if $\|g\|<\infty$. Using the inequality at the beginning, this is satisfied if and only if $\|g\|_{(k)}<\infty$. Finally, we are in a position to prove $F \in W^{2, k}\left(\mathbb{R}^{n}\right)$ because Fourier inversion implies

$$
\|F\|_{(k)}=\|f\|_{(k-2)}
$$

The term on the right is finite because $f \in W^{2, k-2}\left(\mathbb{R}^{n}\right)$.

