Functional Analysis I

Exercise Sheet 1 - Solutions

1. Show Lemma I.3.

Solution: Note that the direct product $V_1 \times V_2$ of two normed spaces is again a normed space with the norm $||(v_1, v_2)|| := ||v_1||_{V_1} + ||v_2||_{V_2}$ (and this norm induces the product topology). Thus a sequence $((v_{1,n}, v_{2,n}))_n$ is Cauchy if and only if the sequences $(v_{1,n})_n$ and $(v_{2,n})_n$ are Cauchy.

Let $v_1, v_2, w_1, w_2 \in V$. Then

$$||(w_1 + w_2) - (v_1 + v_2)|| = ||(w_1 - v_1) + (w_2 - v_2)|| \le ||w_1 - v_1|| + ||w_2 - v_2||$$

by the triangle inequality. Thus for any Cauchy sequence $((v_{1,n}, v_{2,n}))_n$ the sequence given by adding all the vectors $(v_{1,n} + v_{2,n})_n$ is Cauchy. Thus addition is continuous.

Let $\lambda_1, \lambda_2 \in \mathbb{K}$ and $v_1, v_2 \in V$. Then

$$||\lambda_1 v_1 - \lambda_2 v_2|| = ||(\lambda_1 - \lambda_2) v_1 - \lambda_2 (v_1 - v_2)|| \le ||v_1|| \cdot |\lambda_1 - \lambda_2| + |\lambda_2| \cdot ||v_1 - v_2||.$$

Using an argument similar to the one above, one can use this inequality to prove that multiplication is continuous.

- 2. Let \mathscr{H} be a Hilbert space with norm $|| \cdot ||$.
 - (a) Prove: For all $\epsilon > 0$, there exists $\delta > 0$ such that whenever $||x|| \leq 1$ and $||y|| \leq 1$ satisfy $||x y|| > \epsilon$ then $||\frac{x+y}{2}|| < 1 \delta$. Compute δ as a function of ϵ .
 - (b) Draw a picture of this geometric property.

Solution:

(a) The parallelogram identity gives

$$\left| \left| \frac{x+y}{2} \right| \right|^2 = (1/2)(||x||^2 + ||y||^2) - \left| \left| \frac{x-y}{2} \right| \right|^2 < 1 - \epsilon^2/4$$

A possible choice is $\epsilon(\delta) = 1 - \sqrt{1 - \epsilon^2/4}$.

(b)

3. Let \mathscr{H} be a Hilbert space, $x, y, z \in \mathscr{H}$, $c \colon \mathbb{R} \to \mathscr{H}$, $t \mapsto tx + (1 - t)y$ a parametrization of the line through x and y, and $f(t) := ||z - c(t)||^2$. Assuming $x \neq y$, show that f is strictly convex.

Solution: The sesquilinearity of the inner product gives

$$f(t) = ||z - y||^2 + 2t \operatorname{Re}\langle z - y, y - x \rangle + t^2 ||y - x||^2.$$

Thus $f''(t) = 2||y - x||^2 > 0$ for all $t \in \mathbb{R}$, so f is strictly convex.

4. Let $C \subset \mathscr{H}$ be a closed, convex subset of a Hilbert space, and set $d(x, C) := \inf\{||x - y|| : y \in C\}$ for all $x \in \mathscr{H}$. Show that for each $x \in \mathscr{H}$, there is a unique point $p(x) \in C$ which satisfies d(x, p(x)) = d(x, C).

Hint: Let $(x_n)_n$ be a sequence in C with $d(x, x_n) \to d(x, C)$ as $n \to \infty$. Prove by using exercise 2, that any such sequence is Cauchy. Use exercise 3 to prove that any two points x_1, x_2 which satisfy $d(x, x_1) = d(x, x_2) = d(x, C)$ are equal.

Solution: We first prove the existence of such a point. By shifting x and C if necessary, we are free to assume x = 0. Let $(x_n)_n$ be any sequence of vectors $x_n \in C$ with $d(0, x_n) \to d(0, C)$ as $n \to \infty$. Suppose this sequence is not Cauchy. Let $\epsilon > 0$ such that for all $N \in \mathbb{N}$ there exist $n, m \ge N$ with $||x_n - x_m|| > \epsilon$. Let $\delta > 0$ and N > 0 such that $d(0, x_n) - d(0, C) < \delta$

Functional Analysis I

Prof. Marc Burger

D-MATH

for all $n \ge N$. Pick $n, m \in \mathbb{N}$ with $||x_n - x_m|| > \epsilon$ and $n, m \ge N$. Because C is convex we have $d(0, C) \le ||\frac{x_n + x_m}{2}||$. The parallelogram identity gives

$$d(0,C)^{2} \leq \left| \left| \frac{x_{n} + x_{m}}{2} \right| \right|^{2} = \frac{1}{2} (||x_{n}||^{2} + ||x_{m}||^{2}) - \left| \left| \frac{x_{n} - x_{m}}{2} \right| \right|^{2} \leq (d(0,C) + \delta)^{2} - \epsilon^{2}/4.$$

By letting $\delta \to 0$, we arrive at $0 \leq -\epsilon^2/4$. This contradiction proves that the sequence is Cauchy.

Suppose there exist two distinct points $x_1, x_2 \in C$ with $d(x, x_1) = d(x, x_2) = d(x, C)$. We get

$$d\left(x, \frac{x_1 + x_2}{2}\right) < d(x, C)$$

from exercise 3. This contradicts the definition of d(x, C) since $\frac{x_1+x_2}{2} \in C$. Thus there can never be two distinct points satisfying this relation.

5. Verify that $\bigwedge^{\alpha}(\mathbb{R})$ is a Banach space (see Example I.11).

Solution: We only prove that the space $\bigwedge^{\alpha}(\mathbb{R})$ is complete. Let $(f_n)_n$ be a Cauchy sequence in $\bigwedge^{\alpha}(\mathbb{R})$. For each $x \in \mathbb{R}$ the limit $\lim_{n\to\infty} f_n(x)$ exists because $|f_n(x) - f_m(x)| \leq ||f_n - f_m||_{\bigwedge^{\alpha}}$. Define the function $f(x) := \lim_{n\to\infty} f_n(x)$.

We prove $f \in \bigwedge^{\alpha}(\mathbb{R})$. Because $(f_n)_n$ is a Cauchy sequence, there exists $C \ge 0$ with $||f_n||_{\bigwedge^{\alpha}} \le C$ for all $n \in \mathbb{N}$. In particular, for all $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ we have $|f_n(x) - f_n(y)| \le C|x - y|^{\alpha}$. Letting $n \to \infty$, we get the inequality $|f(x) - f(y)| \le C|x - y|^{\alpha}$. By a similar argument, we get $|f(x)| \le C$ for all $x \in \mathbb{R}$. Thus $f \in \bigwedge^{\alpha}(\mathbb{R})$.

We prove $||f - f_n||_{\bigwedge^{\alpha}} \to 0$ as $n \to \infty$. Let $\epsilon > 0$. There exists N > 0 such that for all $n, m \ge N$ we have $||f_n - f_m||_{\bigwedge^{\alpha}} < \epsilon$. Consider $x, y, z \in \mathbb{R}$ with $y \ne z$, then there exists M such that for all $m \ge M$ we have $|f(x) - f_m(x)| < \epsilon$ and $|f(y) - f_m(y)| < \epsilon |y - z|^{\alpha}$ and $|f(z) - f_m(z)| < \epsilon |y - z|^{\alpha}$. For all $n \ge N$ and $m \ge \max(N, M)$ we get

$$\begin{split} |f(x) - f_n(x)| + \frac{|(f(y) - f_n(y)) - (f(z) - f_n(z))|}{|y - z|^{\alpha}} &\leq |f(x) - f_M(x)| + |f_M(x) - f_n(x)| \\ &+ \frac{|(f(y) - f_M(y)) - (f(z) - f_M(z))|}{|y - z|^{\alpha}} \\ &+ \frac{|(f_M(y) - f_n(y)) - (f_M(z) - f_n(z))|}{|y - z|^{\alpha}} \\ &< 5\epsilon. \end{split}$$

Taking the supremum yields

$$||f - f_n||_{\bigwedge^{\alpha}} < 5\epsilon$$

for all $n \ge N$. Hence $||f - f_n||_{\bigwedge^{\alpha}} \to 0$ as $n \to \infty$.

6. Let $\alpha > 1$. Show that any $f \colon \mathbb{R} \to \mathbb{R}$ satisfying

$$\sup_{x_1 \neq x_2} \frac{|f(x_1) - f(x_2)|}{|x_1 - x_2|^{\alpha}} < \infty$$

D-MATH Prof. Marc Burger

is constant.

Solution: Let $C := \sup_{x_1 \neq x_2} \frac{|f(x_1) - f(x_2)|}{|x_1 - x_2|^{\alpha}}$ and x < y. Let $n \in \mathbb{N}$. Define the evenly spaced numbers $x = x_0 < x_1 < \cdots < x_n = y$. Then

$$|f(x) - f(y)| \leq \sum_{i=1}^{n} |f(x_{i-1}) - f(x_i)| \leq \sum_{i=1}^{n} C(y-x)^{\alpha} n^{-\alpha} = C(y-x)^{\alpha} n^{1-\alpha}.$$

As $n \to \infty$, this inequality yields f(x) = f(y). Hence f is constant.

7. * One can define $\bigwedge^{\alpha}(X)$ for any metric space (X, d). Give a simple geometric condition on the metric space (X, d), which implies that for all $\alpha > 1$ the space $\bigwedge^{\alpha}(X)$ consists only of the constant functions.