## Exercise Sheet 1 - Solutions

1. Show Lemma I.3.

Solution: Note that the direct product $V_{1} \times V_{2}$ of two normed spaces is again a normed space with the norm $\left\|\left(v_{1}, v_{2}\right)\right\|:=\left\|v_{1}\right\|_{V_{1}}+\left\|v_{2}\right\|_{V_{2}}$ (and this norm induces the product topology). Thus a sequence $\left(\left(v_{1, n}, v_{2, n}\right)\right)_{n}$ is Cauchy if and only if the sequences $\left(v_{1, n}\right)_{n}$ and $\left(v_{2, n}\right)_{n}$ are Cauchy.
Let $v_{1}, v_{2}, w_{1}, w_{2} \in V$. Then

$$
\left\|\left(w_{1}+w_{2}\right)-\left(v_{1}+v_{2}\right)\right\|=\left\|\left(w_{1}-v_{1}\right)+\left(w_{2}-v_{2}\right)\right\| \leqslant\left\|w_{1}-v_{1}\right\|+\left\|w_{2}-v_{2}\right\|
$$

by the triangle inequality. Thus for any Cauchy sequence $\left(\left(v_{1, n}, v_{2, n}\right)\right)_{n}$ the sequence given by adding all the vectors $\left(v_{1, n}+v_{2, n}\right)_{n}$ is Cauchy. Thus addition is continuous.
Let $\lambda_{1}, \lambda_{2} \in \mathbb{K}$ and $v_{1}, v_{2} \in V$. Then

$$
\left\|\lambda_{1} v_{1}-\lambda_{2} v_{2}\right\|=\left\|\left(\lambda_{1}-\lambda_{2}\right) v_{1}-\lambda_{2}\left(v_{1}-v_{2}\right)\right\| \leqslant\left\|v_{1}\right\| \cdot\left|\lambda_{1}-\lambda_{2}\right|+\left|\lambda_{2}\right| \cdot\left\|v_{1}-v_{2}\right\|
$$

Using an argument similar to the one above, one can use this inequality to prove that multiplication is continuous.
2. Let $\mathscr{H}$ be a Hilbert space with norm $\|\cdot\|$.
(a) Prove: For all $\epsilon>0$, there exists $\delta>0$ such that whenever $\|x\| \leqslant 1$ and $\|y\| \leqslant 1$ satisfy $\|x-y\|>\epsilon$ then $\left\|\frac{x+y}{2}\right\|<1-\delta$. Compute $\delta$ as a function of $\epsilon$.
(b) Draw a picture of this geometric property.

## Solution:

(a) The parallelogram identity gives

$$
\left\|\frac{x+y}{2}\right\|^{2}=(1 / 2)\left(\|x\|^{2}+\|y\|^{2}\right)-\left\|\frac{x-y}{2}\right\|^{2}<1-\epsilon^{2} / 4
$$

A possible choice is $\epsilon(\delta)=1-\sqrt{1-\epsilon^{2} / 4}$.
(b)

3. Let $\mathscr{H}$ be a Hilbert space, $x, y, z \in \mathscr{H}, c: \mathbb{R} \rightarrow \mathscr{H}, t \mapsto t x+(1-t) y$ a parametrization of the line through $x$ and $y$, and $f(t):=\|z-c(t)\|^{2}$. Assuming $x \neq y$, show that $f$ is strictly convex.

Solution: The sesquilinearity of the inner product gives

$$
f(t)=\|z-y\|^{2}+2 t \operatorname{Re}\langle z-y, y-x\rangle+t^{2}\|y-x\|^{2}
$$

Thus $f^{\prime \prime}(t)=2\|y-x\|^{2}>0$ for all $t \in \mathbb{R}$, so $f$ is strictly convex.
4. Let $C \subset \mathscr{H}$ be a closed, convex subset of a Hilbert space, and set $d(x, C):=\inf \{\|x-y\|:$ $y \in C\}$ for all $x \in \mathscr{H}$. Show that for each $x \in \mathscr{H}$, there is a unique point $p(x) \in C$ which satisfies $d(x, p(x))=d(x, C)$.

Hint: Let $\left(x_{n}\right)_{n}$ be a sequence in $C$ with $d\left(x, x_{n}\right) \rightarrow d(x, C)$ as $n \rightarrow \infty$. Prove by using exercise 2 , that any such sequence is Cauchy. Use exercise 3 to prove that any two points $x_{1}, x_{2}$ which satisfy $d\left(x, x_{1}\right)=d\left(x, x_{2}\right)=d(x, C)$ are equal.
Solution: We first prove the existence of such a point. By shifting $x$ and $C$ if necessary, we are free to assume $x=0$. Let $\left(x_{n}\right)_{n}$ be any sequence of vectors $x_{n} \in C$ with $d\left(0, x_{n}\right) \rightarrow d(0, C)$ as $n \rightarrow \infty$. Suppose this sequence is not Cauchy. Let $\epsilon>0$ such that for all $N \in \mathbb{N}$ there exist $n, m \geqslant N$ with $\left\|x_{n}-x_{m}\right\|>\epsilon$. Let $\delta>0$ and $N>0$ such that $d\left(0, x_{n}\right)-d(0, C)<\delta$
for all $n \geqslant N$. Pick $n, m \in \mathbb{N}$ with $\left\|x_{n}-x_{m}\right\|>\epsilon$ and $n, m \geqslant N$. Because $C$ is convex we have $d(0, C) \leqslant\left\|\frac{x_{n}+x_{m}}{2}\right\|$. The parallelogram identity gives

$$
d(0, C)^{2} \leqslant\left\|\frac{x_{n}+x_{m}}{2}\right\|^{2}=\frac{1}{2}\left(\left\|x_{n}\right\|^{2}+\left\|x_{m}\right\|^{2}\right)-\left\|\frac{x_{n}-x_{m}}{2}\right\|^{2} \leqslant(d(0, C)+\delta)^{2}-\epsilon^{2} / 4
$$

By letting $\delta \rightarrow 0$, we arrive at $0 \leqslant-\epsilon^{2} / 4$. This contradiction proves that the sequence is Cauchy.
Suppose there exist two distinct points $x_{1}, x_{2} \in C$ with $d\left(x, x_{1}\right)=d\left(x, x_{2}\right)=d(x, C)$. We get

$$
d\left(x, \frac{x_{1}+x_{2}}{2}\right)<d(x, C)
$$

from exercise 3. This contradicts the definition of $d(x, C)$ since $\frac{x_{1}+x_{2}}{2} \in C$. Thus there can never be two distinct points satisfying this relation.
5. Verify that $\bigwedge^{\alpha}(\mathbb{R})$ is a Banach space (see Example I.11).

Solution: We only prove that the space $\bigwedge^{\alpha}(\mathbb{R})$ is complete. Let $\left(f_{n}\right)_{n}$ be a Cauchy sequence in $\bigwedge^{\alpha}(\mathbb{R})$. For each $x \in \mathbb{R}$ the limit $\lim _{n \rightarrow \infty} f_{n}(x)$ exists because $\left|f_{n}(x)-f_{m}(x)\right| \leqslant \| f_{n}-$ $f_{m} \|_{\wedge^{\alpha}}$. Define the function $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$.
We prove $f \in \Lambda^{\alpha}(\mathbb{R})$. Because $\left(f_{n}\right)_{n}$ is a Cauchy sequence, there exists $C \geqslant 0$ with $\left\|f_{n}\right\|_{\Lambda^{\alpha}} \leqslant$ $C$ for all $n \in \mathbb{N}$. In particular, for all $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ we have $\left|f_{n}(x)-f_{n}(y)\right| \leqslant C|x-y|^{\alpha}$. Letting $n \rightarrow \infty$, we get the inequality $|f(x)-f(y)| \leqslant C|x-y|^{\alpha}$. By a similar argument, we get $|f(x)| \leqslant C$ for all $x \in \mathbb{R}$. Thus $f \in \Lambda^{\alpha}(\mathbb{R})$.
We prove $\left\|f-f_{n}\right\|_{\wedge^{\alpha}} \rightarrow 0$ as $n \rightarrow \infty$. Let $\epsilon>0$. There exists $N>0$ such that for all $n, m \geqslant N$ we have $\left\|f_{n}-f_{m}\right\|_{\Lambda^{\alpha}}<\epsilon$. Consider $x, y, z \in \mathbb{R}$ with $y \neq z$, then there exists $M$ such that for all $m \geqslant M$ we have $\left|f(x)-f_{m}(x)\right|<\epsilon$ and $\left|f(y)-f_{m}(y)\right|<\epsilon|y-z|^{\alpha}$ and $\left|f(z)-f_{m}(z)\right|<\epsilon|y-z|^{\alpha}$. For all $n \geqslant N$ and $m \geqslant \max (N, M)$ we get

$$
\begin{aligned}
\left|f(x)-f_{n}(x)\right|+\frac{\left|\left(f(y)-f_{n}(y)\right)-\left(f(z)-f_{n}(z)\right)\right|}{|y-z|^{\alpha}} & \leqslant\left|f(x)-f_{M}(x)\right|+\left|f_{M}(x)-f_{n}(x)\right| \\
& +\frac{\left|\left(f(y)-f_{M}(y)\right)-\left(f(z)-f_{M}(z)\right)\right|}{|y-z|^{\alpha}} \\
& +\frac{\left|\left(f_{M}(y)-f_{n}(y)\right)-\left(f_{M}(z)-f_{n}(z)\right)\right|}{|y-z|^{\alpha}} \\
& <5 \epsilon .
\end{aligned}
$$

Taking the supremum yields

$$
\left\|f-f_{n}\right\|_{\wedge^{\alpha}}<5 \epsilon
$$

for all $n \geqslant N$. Hence $\left\|f-f_{n}\right\|_{\wedge^{\alpha}} \rightarrow 0$ as $n \rightarrow \infty$.
6. Let $\alpha>1$. Show that any $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
\sup _{x_{1} \neq x_{2}} \frac{\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}}<\infty
$$

is constant.
Solution: Let $C:=\sup _{x_{1} \neq x_{2}} \frac{\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}}$ and $x<y$. Let $n \in \mathbb{N}$. Define the evenly spaced numbers $x=x_{0}<x_{1}<\cdots<x_{n}=y$. Then

$$
|f(x)-f(y)| \leqslant \sum_{i=1}^{n}\left|f\left(x_{i-1}\right)-f\left(x_{i}\right)\right| \leqslant \sum_{i=1}^{n} C(y-x)^{\alpha} n^{-\alpha}=C(y-x)^{\alpha} n^{1-\alpha}
$$

As $n \rightarrow \infty$, this inequality yields $f(x)=f(y)$. Hence $f$ is constant.
7. * One can define $\bigwedge^{\alpha}(X)$ for any metric space $(X, d)$. Give a simple geometric condition on the metric space $(X, d)$, which implies that for all $\alpha>1$ the space $\bigwedge^{\alpha}(X)$ consists only of the constant functions.

