
D-MATH
Prof. Marc Burger

Functional Analysis I HS 2023

Exercise Sheet 1 - Solutions

1. Show Lemma I.3.

Solution: Note that the direct product V1×V2 of two normed spaces is again a normed space
with the norm ||(v1, v2)|| := ||v1||V1

+ ||v2||V2
(and this norm induces the product topology).

Thus a sequence ((v1,n, v2,n))n is Cauchy if and only if the sequences (v1,n)n and (v2,n)n are
Cauchy.

Let v1, v2, w1, w2 ∈ V . Then

||(w1 + w2)− (v1 + v2)|| = ||(w1 − v1) + (w2 − v2)|| ⩽ ||w1 − v1||+ ||w2 − v2||

by the triangle inequality. Thus for any Cauchy sequence ((v1,n, v2,n))n the sequence given
by adding all the vectors (v1,n + v2,n)n is Cauchy. Thus addition is continuous.

Let λ1, λ2 ∈ K and v1, v2 ∈ V . Then

||λ1v1 − λ2v2|| = ||(λ1 − λ2)v1 − λ2(v1 − v2)|| ⩽ ||v1|| · |λ1 − λ2|+ |λ2| · ||v1 − v2||.

Using an argument similar to the one above, one can use this inequality to prove that mul-
tiplication is continuous.

2. Let H be a Hilbert space with norm || · ||.

(a) Prove: For all ϵ > 0, there exists δ > 0 such that whenever ||x|| ⩽ 1 and ||y|| ⩽ 1 satisfy
||x− y|| > ϵ then ||x+y

2 || < 1− δ. Compute δ as a function of ϵ.

(b) Draw a picture of this geometric property.

Solution:

(a) The parallelogram identity gives∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣2 = (1/2)(||x||2 + ||y||2)−
∣∣∣∣∣∣∣∣x− y

2

∣∣∣∣∣∣∣∣2 < 1− ϵ2/4

A possible choice is ϵ(δ) = 1−
√
1− ϵ2/4.

(b)
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3. Let H be a Hilbert space, x, y, z ∈ H , c : R → H , t 7→ tx + (1 − t)y a parametrization of
the line through x and y, and f(t) := ||z − c(t)||2. Assuming x ̸= y, show that f is strictly
convex.

Solution: The sesquilinearity of the inner product gives

f(t) = ||z − y||2 + 2tRe⟨z − y, y − x⟩+ t2||y − x||2.

Thus f ′′(t) = 2||y − x||2 > 0 for all t ∈ R, so f is strictly convex.

4. Let C ⊂ H be a closed, convex subset of a Hilbert space, and set d(x,C) := inf{||x − y|| :
y ∈ C} for all x ∈ H . Show that for each x ∈ H , there is a unique point p(x) ∈ C which
satisfies d(x, p(x)) = d(x,C).

Hint: Let (xn)n be a sequence in C with d(x, xn) → d(x,C) as n → ∞. Prove by using
exercise 2, that any such sequence is Cauchy. Use exercise 3 to prove that any two points
x1, x2 which satisfy d(x, x1) = d(x, x2) = d(x,C) are equal.

Solution: We first prove the existence of such a point. By shifting x and C if necessary, we
are free to assume x = 0. Let (xn)n be any sequence of vectors xn ∈ C with d(0, xn) → d(0, C)
as n → ∞. Suppose this sequence is not Cauchy. Let ϵ > 0 such that for all N ∈ N there
exist n,m ⩾ N with ||xn − xm|| > ϵ. Let δ > 0 and N > 0 such that d(0, xn) − d(0, C) < δ
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for all n ⩾ N . Pick n,m ∈ N with ||xn − xm|| > ϵ and n,m ⩾ N. Because C is convex we
have d(0, C) ⩽ ||xn+xm

2 ||. The parallelogram identity gives

d(0, C)2 ⩽

∣∣∣∣∣∣∣∣xn + xm

2

∣∣∣∣∣∣∣∣2 =
1

2
(||xn||2 + ||xm||2)−

∣∣∣∣∣∣∣∣xn − xm

2

∣∣∣∣∣∣∣∣2 ⩽ (d(0, C) + δ)2 − ϵ2/4.

By letting δ → 0, we arrive at 0 ⩽ −ϵ2/4. This contradiction proves that the sequence is
Cauchy.

Suppose there exist two distinct points x1, x2 ∈ C with d(x, x1) = d(x, x2) = d(x,C). We get

d

(
x,

x1 + x2

2

)
< d(x,C)

from exercise 3. This contradicts the definition of d(x,C) since x1+x2

2 ∈ C. Thus there can
never be two distinct points satisfying this relation.

5. Verify that
∧α

(R) is a Banach space (see Example I.11).

Solution: We only prove that the space
∧α

(R) is complete. Let (fn)n be a Cauchy sequence
in

∧α
(R). For each x ∈ R the limit limn→∞ fn(x) exists because |fn(x) − fm(x)| ⩽ ||fn −

fm||∧α . Define the function f(x) := limn→∞ fn(x).

We prove f ∈
∧α

(R). Because (fn)n is a Cauchy sequence, there exists C ⩾ 0 with ||fn||∧α ⩽
C for all n ∈ N. In particular, for all x, y ∈ R and n ∈ N we have |fn(x)−fn(y)| ⩽ C|x−y|α.
Letting n → ∞, we get the inequality |f(x)− f(y)| ⩽ C|x− y|α. By a similar argument, we
get |f(x)| ⩽ C for all x ∈ R. Thus f ∈

∧α
(R).

We prove ||f − fn||∧α → 0 as n → ∞. Let ϵ > 0. There exists N > 0 such that for all
n,m ⩾ N we have ||fn − fm||∧α < ϵ. Consider x, y, z ∈ R with y ̸= z, then there exists M
such that for all m ⩾ M we have |f(x) − fm(x)| < ϵ and |f(y) − fm(y)| < ϵ|y − z|α and
|f(z)− fm(z)| < ϵ|y − z|α. For all n ⩾ N and m ⩾ max(N,M) we get

|f(x)− fn(x)|+
|(f(y)− fn(y))− (f(z)− fn(z))|

|y − z|α
⩽ |f(x)− fM (x)|+ |fM (x)− fn(x)|

+
|(f(y)− fM (y))− (f(z)− fM (z))|

|y − z|α

+
|(fM (y)− fn(y))− (fM (z)− fn(z))|

|y − z|α

< 5ϵ.

Taking the supremum yields
||f − fn||∧α < 5ϵ

for all n ⩾ N . Hence ||f − fn||∧α → 0 as n → ∞.

6. Let α > 1. Show that any f : R → R satisfying

sup
x1 ̸=x2

|f(x1)− f(x2)|
|x1 − x2|α

< ∞
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is constant.

Solution: Let C := supx1 ̸=x2

|f(x1)−f(x2)|
|x1−x2|α and x < y. Let n ∈ N. Define the evenly spaced

numbers x = x0 < x1 < · · · < xn = y. Then

|f(x)− f(y)| ⩽
n∑

i=1

|f(xi−1)− f(xi)| ⩽
n∑

i=1

C(y − x)αn−α = C(y − x)αn1−α.

As n → ∞, this inequality yields f(x) = f(y). Hence f is constant.

7. * One can define
∧α

(X) for any metric space (X, d). Give a simple geometric condition on the
metric space (X, d), which implies that for all α > 1 the space

∧α
(X) consists only of the

constant functions.
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