Functional Analysis I

Exercise Sheet 2

Let $(V, || \cdot ||)$ be a normed space.

1. Let $W \subset V$ be a subspace. For any $v \in V$ define $d(v, W) := \inf_{w \in W} ||v - w||$. Assume $W \subset V$ is closed and $W \neq V$. Show that for all $\epsilon > 0$ there exists $v \in V$ with ||v|| = 1 and $d(v, W) > 1 - \epsilon$.

2. Let $W \subset V$ be a subspace. Define ||v + W|| := d(v, W) for all $v + W \in V/W$

- (a) Show that this defines a norm on V/W if and only if W is closed in V.
- (b) Shot that if V is Banach and W closed in V, then V/W is Banach.
- (c) Prove: If W is closed and $W \neq V$, then the canonical projection

$$\pi \colon V \to V/W$$

satisfies $||\pi|| = 1$

- 3. Construct an isometry $T: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ such that the image $R(T) \subset \ell^2(\mathbb{Z})$ is a closed, proper subspace of $\ell^2(\mathbb{Z})$.
- 4. Let $S := \{v \in V : ||v|| = 1\}$. Show that the following are equivalent:
 - (a) $\dim(V) < +\infty$
 - (b) S is compact.

Hint: Use exercise 1 to prove (b) implies (a).