Exercise Sheet 2 - Solutions

Let $(V,\|\cdot\|)$ be a normed space.

1. Let $W \subset V$ be a subspace. For any $v \in V$ define $d(v, W):=\inf _{w \in W}\|v-w\|$. Assume $W \subset V$ is closed and $W \neq V$. Show that for all $\epsilon>0$ there exists $v \in V$ with $\|v\|=1$ and $d(v, W)>1-\epsilon$.
Solution: Suppose there exists $\epsilon>0$ such that $d(v, W) \leqslant\|v\|(1-2 \epsilon)$ for all $v \in V$. Let $v_{0} \in V$. By assumption, there exists $w_{1} \in W$ with $\left\|v_{0}-w_{1}\right\| \leqslant\left\|v_{0}\right\|(1-\epsilon)$. Set $v_{1}:=v_{0}-w_{1}$. Using recursion, we construct a sequence of vectors v_{n} such that $\left\|v_{n}\right\| \leqslant(1-\epsilon)^{n}\left\|v_{0}\right\|$ and $v_{0}-v_{n} \in W$ for all $n \in \mathbb{N}$. Thus $v_{0}=\lim _{n \rightarrow \infty}\left(v_{0}-v_{n}\right)$ lies in W since W is closed. This argument works for any $v_{0} \in V$, so $V=W$. This contradicts $V \neq W$.
2. Let $W \subset V$ be a subspace. Define $\|v+W\|:=d(v, W)$ for all $v+W \in V / W$
(a) Show that this defines a norm on V / W if and only if W is closed in V.
(b) Shot that if V is Banach and W closed in V, then V / W is Banach.
(c) Prove: If W is closed and $W \neq V$, then the canonical projection

$$
\pi: V \rightarrow V / W
$$

satisfies $\|\pi\|=1$.
Solution:
(a) Suppose W is closed and consider $\|v+W\|=0$. There exists a sequence $w_{n} \in W$ with $\left\|v-w_{n}\right\|<\frac{1}{n}$. The sequence $\left(w_{n}\right)_{n}$ is Cauchy with limit v. Thus $v \in V$ and hence $v+W=W$. The homogeneity and the triangle inequality follow from the corresponding properties of $\|\cdot\|$.
Suppose $\left(w_{n}\right)_{n}$ is sequence in W with limit w. Then $\|w+W\| \leqslant\left\|w-w_{n}\right\|$ by definition for all $n \in \mathbb{N}$, so we get $\|w+W\|=0$ by letting $n \rightarrow \infty$. Since $\|\cdot\|_{V / W}$ is a norm, this implies $w+W=W$ or, equivalently, $w \in W$. Hence W is closed.
(b) Consider a Cauchy sequence $\left(v_{n}+W\right)_{n}$ in V / W. There exists a subsequence $\left(v_{n_{m}}+W\right)_{m}$ with $\left\|v_{n_{m}}-v_{n_{m+1}}+W\right\|<2^{-m}$ for all m. We use recursion to pick representatives $v_{n_{m}}$ with $\left\|v_{n_{m}}-v_{n_{m+1}}\right\|<2^{-m+1}$. Then $\left(v_{n_{m}}\right)_{n}$ is Cauchy with some limit $v \in V$. Note that $\left\|v+W-v_{n_{m}}+W\right\| \leqslant\left\|v-v_{n_{m}}\right\|$, so $v+W$ is the limit of $\left(v_{n_{m}}+W\right)_{n}$. Thus $v+W$ is the limit of $\left(v_{n}+W\right)_{n}$ because this sequence is Cauchy. By exercise 2 (a), the space V / W is Banach.
(c) We have $\|v+W\| \leqslant\|v\|$ for all $v \in V$, so $\|\pi\| \leqslant 1$. By exercise 1 , for all $\epsilon>0$ there exists $v \in V$ with $\|v\|=1$ and $\|v+W\|>1-\epsilon$. Thus $\|\pi\|>1-\epsilon$ for all $\epsilon>0$. By letting $\epsilon \rightarrow 0$, we arrive at $\|\pi\|=1$.
3. Construct an isometry $T: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ such that the image $R(T) \subset \ell^{2}(\mathbb{Z})$ is a closed, proper subspace of $\ell^{2}(\mathbb{Z})$.

Solution: Consider the linear map $T: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ defined by

$$
\left(T\left(\left(a_{n}\right)\right)\right)_{n}:= \begin{cases}a_{n-1} & \text { if } n>0 \\ 0 & \text { if } n=0 \\ a_{n} & \text { if } n<0\end{cases}
$$

It is an isometry because

$$
\left\|T\left(\left(a_{n}\right)_{n}\right)\right\|_{\ell^{2}}^{2}=\sum_{n}\left|T\left(\left(a_{n}\right)\right)_{n}\left\|^{2}=\sum_{n>0}\left|a_{n-1}\right|^{2}+\sum_{n<0}\left|a_{n}\right|^{2}=\right\|\left(a_{n}\right) \|_{\ell^{2}}^{2} .\right.
$$

The image is $R(T)=\left\{\left(a_{n}\right) \in \ell^{2}(\mathbb{Z}): a_{0}=0\right\}$, which is a closed subspace.
4. Let $S:=\{v \in V:\|v\|=1\}$. Show that the following are equivalent:
(a) $\operatorname{dim}(V)<+\infty$
(b) S is compact.

Hint: Use exercise 1 to prove (b) implies (a).
Solution: If $\operatorname{dim}(V)<+\infty$, the equivalence of all norms on finite-dimensional spaces implies that it is sufficient to prove that the sphere is compact. This follows from the Heine-Borel theorem.

Suppose V is not finite-dimensional. By recursion and exercise 1, we can pick vectors v_{n} with $\left|v_{n}-v_{m}\right|>1 / 2$ for all $m<n$ and $\left\|v_{n}\right\|=1$. No subsequence of this sequence can be Cauchy, so S is not compact.

