Exercise Sheet 3 - Solutions

1. Let $T: V \rightarrow W$ be a linear map between normed vector spaces. Assume W is finitedimensional. Show that T is continuous if and only if $\operatorname{ker}(T)$ is a closed subspace.
Solution: The kernel can be written as $\operatorname{ker}(T)=T^{-1}(\{0\})$. Any normed space is Hausdorff, so the subset $\{0\} \subset W$ is closed. The continuity of T implies that $T^{-1}(\{0\})$ is closed.
Because $\operatorname{ker}(T)$ is closed, exercise 2 on exercise sheet 2 proves that $V / \operatorname{ker}(T)$ can be equipped with the structure of a normed space such that the projection map $\pi: V \rightarrow V / \operatorname{ker}(T)$ is continuous. By the universal property of the kernel, there exists a linear map $\bar{T}: V / \operatorname{ker}(T) \rightarrow$ W such that $\bar{T} \circ \pi=T$. Since the composition of continuous functions is continuous, it suffices to prove that \bar{T} is continuous. This is a linear map between two finite-dimensional normed vector spaces, so it is continuous.
2. Let V be a \mathbb{R}-vector space and $C \subset V$ a convex subset such that for all $v \in V$ there exists $\lambda>0$ with $v \in \lambda C$. Show that

$$
p(v):=\inf \{\lambda>0: v \in \lambda C\}
$$

is a gauge function on V with

$$
\{v \in V: p(v)<1\} \subset C \subset\{v \in V: p(v) \leqslant 1\}
$$

Solution: Let $v \in V$ and $\eta>0$. Then for all $\lambda>0$ we have $\eta v \in \lambda C$ if and only if $v \in(\eta \lambda) C$. Thus $p(\eta v)=\eta p(v)$.
Let $v_{1}, v_{2} \in V$. For all $\lambda_{1}, \lambda_{2}>0$ with $v_{1} \in \lambda_{1} C$ and $v_{2} \in \lambda_{2} C$, the convexity of C implies

$$
\left(\lambda_{1}+\lambda_{2}\right)^{-1}\left(v_{1}+v_{2}\right)=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \frac{v_{1}}{\lambda_{1}}+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \frac{v_{2}}{\lambda_{2}} \in C .
$$

Thus $v_{1}+v_{2} \in\left(\lambda_{1}+\lambda_{2}\right) C$ and so $p\left(v_{1}+v_{2}\right) \leqslant \lambda_{1}+\lambda_{2}$. Taking the infimum yields the desired inequality $p\left(v_{1}+v_{2}\right) \leqslant p\left(v_{1}\right)+p\left(v_{2}\right)$.
Consider $x \in\{v \in V: p(v)<1\}$. Note that $0 \in C$ because for any $\lambda>0$ we have $\lambda 0=0$. Thus $[0,1 / p(x)) \subset\{\lambda \geqslant 0: \lambda x \in C\}$ because C is convex. Since $p(x)<1$, we get $x \in C$.
The condition $x \in C$ implies $p(x) \leqslant 1$ by definition of p.
3. Let V be a normed space, $E \subset V$ a closed subspace with $E \neq V$ and $x_{0} \notin E$. Prove that there exists $f \in V^{*}$ with $f\left(x_{0}\right) \neq 0$ and $E \subset \operatorname{ker}(f)$.
Solution: By exercise 2 of sheet 2 , the space V / E can be given the structure of a normed space such that the projection $\pi: V \rightarrow V / E$ is continuous. Since $\pi\left(x_{0}\right) \neq 0$, Corollary II. 9 implies the existence of a continuous functional $\bar{f}: V / E \rightarrow \mathbb{K}$ with $\bar{f}\left(\pi\left(x_{0}\right)\right) \neq 0$. The functional $f:=\bar{f} \circ \pi$ satisfies all the requirements.
4. Let V be a normed space. Given subsets $A \subset V$ and $B \subset V^{*}$ we define

$$
\begin{aligned}
& A^{\perp}:=\left\{f \in V^{*}:\left.f\right|_{A}=0\right\} \\
& { }^{\perp} B:=\{v \in V: f(v)=0 \text { for all } f \in B\} .
\end{aligned}
$$

(a) Shot that $A^{\perp} \subset V^{*}$ and ${ }^{\perp} B \subset V$ are closed subspaces.
(b) Let $M \subset V$ be a vector subspace. Prove the equality $\bar{M}={ }^{\perp}\left(M^{\perp}\right)$.

Solution:

(a) For each $x \in V$, the space $\{x\}^{\perp}$ is a closed subspace because it is the kernel of the continuous functional $V^{*} \rightarrow \mathbb{K}, f \mapsto f(x)$. We have

$$
A^{\perp}=\bigcap_{x \in A}\{x\}^{\perp}
$$

so A^{\perp} is a closed subspace. The argument for ${ }^{\perp} B$ follows a very similar line of reasoning.
(b) One can see $M \subset{ }^{\perp}\left(M^{\perp}\right)$ by unwrapping the definitions. By exercise (a), the space ${ }^{\perp}\left(M^{\perp}\right)$ is closed, so $\bar{M} \subset{ }^{\perp}\left(M^{\perp}\right)$.
Let $x \in{ }^{\perp}\left(M^{\perp}\right)$ and suppose $x \notin \bar{M}$. By exercise 3 , there exists a continuous functional $f: V \rightarrow \mathbb{K}$ with $f(x) \neq 0$ and $f_{\bar{M}}=0$. In particular, we get $f \in{ }^{\perp} M$. Since $f(x) \neq 0$, this implies $x \notin \perp\left(M^{\perp}\right)$. This contradicts $x \in^{\perp}\left(M^{\perp}\right)$, so we get $x \in \bar{M}$.

