Functional Analysis I

Exercise Sheet 3 - Solutions

1. Let $T: V \to W$ be a linear map between normed vector spaces. Assume W is finitedimensional. Show that T is continuous if and only if ker(T) is a closed subspace.

Solution: The kernel can be written as $\ker(T) = T^{-1}(\{0\})$. Any normed space is Hausdorff, so the subset $\{0\} \subset W$ is closed. The continuity of T implies that $T^{-1}(\{0\})$ is closed.

Because ker(T) is closed, exercise 2 on exercise sheet 2 proves that $V/\ker(T)$ can be equipped with the structure of a normed space such that the projection map $\pi: V \to V/\ker(T)$ is continuous. By the universal property of the kernel, there exists a linear map $\overline{T}: V/\ker(T) \to V/\ker(T)$ W such that $\overline{T} \circ \pi = T$. Since the composition of continuous functions is continuous, it suffices to prove that \overline{T} is continuous. This is a linear map between two finite-dimensional normed vector spaces, so it is continuous.

2. Let V be a \mathbb{R} -vector space and $C \subset V$ a convex subset such that for all $v \in V$ there exists $\lambda > 0$ with $v \in \lambda C$. Show that

$$p(v) := \inf\{\lambda > 0 : v \in \lambda C\}$$

is a gauge function on V with

$$\{v \in V : p(v) < 1\} \subset C \subset \{v \in V : p(v) \leq 1\}$$

Solution: Let $v \in V$ and $\eta > 0$. Then for all $\lambda > 0$ we have $\eta v \in \lambda C$ if and only if $v \in (\eta \lambda) C$. Thus $p(\eta v) = \eta p(v)$.

Let $v_1, v_2 \in V$. For all $\lambda_1, \lambda_2 > 0$ with $v_1 \in \lambda_1 C$ and $v_2 \in \lambda_2 C$, the convexity of C implies

$$(\lambda_1 + \lambda_2)^{-1}(v_1 + v_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2} \frac{v_1}{\lambda_1} + \frac{\lambda_2}{\lambda_1 + \lambda_2} \frac{v_2}{\lambda_2} \in C.$$

Thus $v_1 + v_2 \in (\lambda_1 + \lambda_2)C$ and so $p(v_1 + v_2) \leq \lambda_1 + \lambda_2$. Taking the infimum yields the desired inequality $p(v_1 + v_2) \leq p(v_1) + p(v_2)$.

Consider $x \in \{v \in V : p(v) < 1\}$. Note that $0 \in C$ because for any $\lambda > 0$ we have $\lambda 0 = 0$. Thus $[0, 1/p(x)) \subset \{\lambda \ge 0 : \lambda x \in C\}$ because C is convex. Since p(x) < 1, we get $x \in C$. The condition $x \in C$ implies $p(x) \leq 1$ by definition of p.

3. Let V be a normed space, $E \subset V$ a closed subspace with $E \neq V$ and $x_0 \notin E$. Prove that there exists $f \in V^*$ with $f(x_0) \neq 0$ and $E \subset \ker(f)$.

Solution: By exercise 2 of sheet 2, the space V/E can be given the structure of a normed space such that the projection $\pi: V \to V/E$ is continuous. Since $\pi(x_0) \neq 0$, Corollary II.9 implies the existence of a continuous functional $\overline{f}: V/E \to \mathbb{K}$ with $\overline{f}(\pi(x_0)) \neq 0$. The functional $f := \overline{f} \circ \pi$ satisfies all the requirements.

D-MATH Prof. Marc Burger

4. Let V be a normed space. Given subsets $A \subset V$ and $B \subset V^*$ we define

$$A^{\perp} := \{ f \in V^* : f|_A = 0 \}$$

$${}^{\perp}B := \{ v \in V : f(v) = 0 \text{ for all } f \in B \}.$$

- (a) Shot that $A^{\perp} \subset V^*$ and ${}^{\perp}B \subset V$ are closed subspaces.
- (b) Let $M \subset V$ be a vector subspace. Prove the equality $\overline{M} = {}^{\perp}(M^{\perp})$.

Solution:

(a) For each $x \in V$, the space $\{x\}^{\perp}$ is a closed subspace because it is the kernel of the continuous functional $V^* \to \mathbb{K}, f \mapsto f(x)$. We have

$$A^{\perp} = \bigcap_{x \in A} \{x\}^{\perp},$$

so A^{\perp} is a closed subspace. The argument for ${}^{\perp}B$ follows a very similar line of reasoning.

(b) One can see $M \subset {}^{\perp}(M^{\perp})$ by unwrapping the definitions. By exercise (a), the space ${}^{\perp}(M^{\perp})$ is closed, so $\overline{M} \subset {}^{\perp}(M^{\perp})$.

Let $x \in {}^{\perp}(M^{\perp})$ and suppose $x \notin \overline{M}$. By exercise 3, there exists a continuous functional $f: V \to \mathbb{K}$ with $f(x) \neq 0$ and $f_{\overline{M}} = 0$. In particular, we get $f \in {}^{\perp}M$. Since $f(x) \neq 0$, this implies $x \notin {}^{\perp}(M^{\perp})$. This contradicts $x \in {}^{\perp}(M^{\perp})$, so we get $x \in \overline{M}$.