D-MATH Prof. Marc Burger Functional Analysis I

Exercise Sheet 4

- 1. Show Prop. III.3 (1) and (2).
- 2. Let \mathscr{H} be a separable Hilbert space and $\{e_i : i \ge 1\}$ an orthonormal basis for \mathscr{H} .
 - (a) Prove: For all complex numbers $\lambda_i \in \mathbb{C}$, the operator

$$T \colon \bigoplus_{i \ge 1} \mathbb{C}e_i \to \bigoplus_{i \ge 1} \mathbb{C}e_i, \ e_i \mapsto \lambda_i e_i$$

extends to a bounded operator on \mathscr{H} if and only if $\sup_i |\lambda_i| < \infty$.

- (b) Show that if T is compact, then $\lim_{i\to\infty} \lambda_i = 0$.
- 3. Let \mathscr{H} be a separable Hilbert space and $\mathscr{B}_2(\mathscr{H})$ the space of Hilbert-Schmidt operators equipped with the Hilbert-Schmidt norm. Prove that $\mathscr{B}_2(\mathscr{H})$ is a Hilbert space.
- 4. Let (X, \mathcal{B}, μ) be a σ -finite measure space such that $L^2(X, \mu)$ is separable.¹ Prove that every Hilbert-Schmidt operator on $L^2(X, \mu)$ is of the form T_K for some kernel $K \in L^2(X \times X, \mu \times \mu)$.

¹See this mathoverflow thread for a discussion on when $L^2(X)$ is separable. More general sources of examples are Radon measures on second-countable LCH spaces, e.g. smooth measures on manifolds.