D-MATH Prof. Marc Burger Functional Analysis I

 $\mathrm{HS}\ 2023$

Exercise Sheet 5

1. Let \mathscr{H} be a Hilbert space and $T \in \mathscr{B}(\mathscr{H})$. Show that

$$||TT^*|| = ||T^*T|| = ||T||^2.$$

2. Let \mathscr{H} be a Hilbert space. An operator $T \in \mathscr{B}(H)$ is called normal if $TT^* = T^*T$. Show that if T is a compact normal operator, then \mathscr{H} has an orthonormal basis of eigenvectors of T. Show that the eigenspaces satisfy $\dim_{\mathbb{K}}(\mathscr{H}_{\lambda}) < \infty$ for all $\lambda \neq 0$, and for all $\epsilon > 0$

$$|\{\lambda: |\lambda| \ge \epsilon, \ \mathscr{H}_{\lambda} \neq 0\}| < \infty.$$

3. Let a > b > 0. Set $I := (-a, a) \subset \mathbb{R}$ and $J := [-b, b] \subset I$. Let

$$C_b^1(I) := \{ f \colon I \to \mathbb{R} : f \in C^1, ||f||_\infty < \infty, ||f'||_\infty \le \infty \}.$$

This is a Banach space when equipped with the norm

$$||f|| := ||f||_{\infty} + ||f'||_{\infty}$$

Let $C_b(J)$ be the space of continuous functions with norm $|| \cdot ||_{\infty}$. Prove that the restriction operator

$$C_b^1(I) \to C_b(J)$$

is compact.

Hint: Use the Arzela-Ascoli theorem.

4. Let \mathcal{B} be a Banach space of infinite dimension. Show that \mathcal{B} does not admit a countable vector space basis.