Exercise Sheet 5 - Solutions

1. Let \mathscr{H} be a Hilbert space and $T \in \mathscr{B}(\mathscr{H})$. Show that

$$
\left\|T T^{*}\right\|=\left\|T^{*} T\right\|=\|T\|^{2}
$$

Solution: Note that we have $\left|\left\langle T^{*} T v, v\right\rangle\right|=|\langle T v, T v\rangle|=\|T v\|^{2}$ for all $v \in \mathscr{H}$. Moreover, the operator $T^{*} T$ is self-adjoint, so Lemma III. 16 implies

$$
\left\|T^{*} T\right\|=\sup \left\{\|T v\|^{2}:\|v\|=1\right\}=(\sup \{\|T v\|:\|v\|=1\})^{2}=\|T\|^{2}
$$

We find $\left|\left\langle T T^{*} v, v\right\rangle\right|=\left|\left\langle T^{*} v, T^{*} v\right\rangle\right|=\left\|T^{*} v\right\|^{2}$ for all $v \in \mathscr{H}$. Now, the same argument as above shows $\left\|T T^{*}\right\|=\left\|T^{*}\right\|^{2}$. Corollary II. 11 says that we have $\|T\|=\left\|T^{*}\right\|$, so we can chain the above equalities to get

$$
\left\|T T^{*}\right\|=\left\|T^{*}\right\|^{2}=\|T\|^{2}=\left\|T^{*} T\right\|
$$

2. Let \mathscr{H} be a Hilbert space. An operator $T \in \mathscr{B}(H)$ is called normal if $T T^{*}=T^{*} T$. Show that if T is a compact normal operator, then \mathscr{H} has an orthonormal basis of eigenvectors of T. Show that the eigenspaces satisfy $\operatorname{dim}_{\mathbb{K}}\left(\mathscr{H}_{\lambda}\right)<\infty$ for all $\lambda \neq 0$, and for all $\epsilon>0$

$$
\left|\left\{\lambda:|\lambda| \geqslant \epsilon, \quad \mathscr{H}_{\lambda} \neq 0\right\}\right|<\infty
$$

Solution: Define the operators $S_{1}:=\frac{1}{2}\left(T+T^{*}\right)$ and $S_{2}:=\frac{1}{2}\left(T-T^{*}\right)$. Note that the adjoint of a compact operator is compact, so S_{1} (and S_{2}) are compact.
Let $\mathscr{H}_{\lambda}^{1}$ be the eigenspace of S_{1} to the eigenvalue $\lambda \in \mathbb{R}$. Note that this space is finitedimensional because S_{1} is compact. Because T is normal (and this is the crucial point!) we have $S_{1} S_{2}=S_{2} S_{1}$. Let $v \in \mathscr{H}_{\lambda}^{1}$, then

$$
S_{1}\left(S_{2} v\right)=S_{2}\left(S_{1} v\right)=\lambda\left(S_{2} v\right)
$$

This implies $S_{2} v \in \mathscr{H}_{\lambda}^{1}$. Thus S_{2} descends to an operator on $\mathscr{H}_{\lambda}^{1}$. The operator satisfies $\left(i S_{2}\right)^{*}=i S_{2}$, so the spectral theorem can be applied to $\left.S_{2}\right|_{\mathscr{H}_{\lambda}^{1}}$ to give an orthonormal basis for $\mathscr{H}_{\lambda}^{1}$ consisting of eigenvectors of S_{2}. Pick such a basis B_{λ} for each λ.
The operator S_{1} is self-adjoint, so by the spectral theorem the union of all the B_{λ} is an orthonormal basis of \mathscr{H}. Each vector in this basis is an eigenvector of S_{1} and S_{2}, so this is an orthonormal basis of eigenvectors for $T=S_{1}+S_{2}$.
Let $\mathscr{H}_{i \eta}^{2}$ be the eigenspace of S_{2} of eigenvalue $i \eta$ for some $\eta \in \mathbb{R}$. Consider an eigenvector $v \in \mathscr{H}_{x+i y}$ to T with eigenvalue $x+i y$ with $x, y \in \mathbb{R}$. Then v is orthogonal to the eigenspaces \mathscr{H}_{λ} with $\lambda \neq x+i y$, so v can be written in our basis as the sum of eigenvectors to the eigenvalues $x+i y$. Therefore $v \in \mathscr{H}_{x}^{1} \cap \mathscr{H}_{i y}^{2}$. This proves $\mathscr{H}_{x+i y}=\mathscr{H}_{x}^{1} \cap \mathscr{H}_{i y}^{2}$, so the space $\mathscr{H}_{x+i y}$ is finite-dimensional.
Let $\epsilon>0$ and suppose there exist infinitely many non-zero eigenvalues $\lambda \in \mathbb{K}$ with $|\lambda| \geqslant \epsilon$. Let $v_{n} \in \mathscr{H}$ be an orthonormal sequence of eigenvectors, whose eigenvalues λ_{n} are pair-wise distinct and $\left|\lambda_{n}\right| \geqslant \epsilon$. Then the sequence $\left(T v_{n}\right)_{n}$ can not have a converging subsequence. However, this contradicts the compactness of T.
3. Let $a>b>0$. Set $I:=(-a, a) \subset \mathbb{R}$ and $J:=[-b, b] \subset I$. Let

$$
C_{b}^{1}(I):=\left\{f: I \rightarrow \mathbb{R}: f \in C^{1},\|f\|_{\infty}<\infty,\left\|f^{\prime}\right\|_{\infty} \leqslant \infty\right\}
$$

This is a Banach space when equipped with the norm

$$
\|f\|:=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}
$$

Let $C_{b}(J)$ be the space of continuous functions with norm $\|\cdot\|_{\infty}$. Prove that the restriction operator

$$
C_{b}^{1}(I) \rightarrow C_{b}(J)
$$

is compact.
Hint: Use the Arzela-Ascoli theorem.
Solution: Let $\left(f_{n}\right)_{n}$ be sequence in $C_{b}^{1}(I)$ with $\left\|f_{n}\right\| \leqslant 1$ for all $n \geqslant 0$. We need to prove that the sequence $\left(\left.f_{n}\right|_{J}\right)_{n}$ has a convergent subsequence. By the Arzela-Ascoli theorem, we need to show that the sequence is bounded from above and that for every $\epsilon>0$ there exists $\delta>0$ such that for all $x, y \in J$ with $|x-y|<\delta$ we have $\left|f_{n}(x)-f_{n}(y)\right|<\epsilon$ for all $n \in \mathbb{N}$. We have $\left\|f_{n}\right\| \leqslant 1$ so $\left|f_{n}(x)\right| \leqslant 1$ for all $n \in \mathbb{N}$ and $x \in J$. This proves that the sequence is bounded above.
The same argument proves $\left|f_{n}^{\prime}(x)\right| \leqslant 1$ for all $x \in J$ and $n \in \mathbb{N}$. Let $x, y \in J$, then the mean value theorem implies that for each $n \in \mathbb{N}$ there exists a $\xi \in J$ such that

$$
\left|f_{n}(x)-f_{n}(y)\right|=\left|f^{\prime}(\xi)\right||x-y| \leqslant|x-y|
$$

So we can take $\delta=\epsilon$ to achieve equicontinuity.
4. Let \mathcal{B} be a Banach space of infinite dimension. Show that \mathcal{B} does not admit a countable vector space basis.
Solution: Suppose $\left\{v_{i}: i \geqslant 0\right\}$ is a countable basis of \mathcal{B}. Consider the subspaces \mathcal{B}_{n} which are spanned by the vectors v_{1}, \ldots, v_{n}. We have $\bigcup_{n} \mathcal{B}_{n}=\mathcal{B}$ because $\left\{v_{i}: i \geqslant 0\right\}$ is a basis. On the other hand, the spaces \mathcal{B}_{n} are closed subspaces because they are complete by the uniqueness of norms on finite-dimensional vector spaces. By the Baire category theorem, there exists $n \geqslant 0$ such that \mathcal{B}_{n} has a non-empty interior. But this is impossible because any subspace with a non-empty interior is the entire space.

