Exercise Sheet 6 - Solutions

1. Let E be a Banach space and $B^{*} \subset E^{*}$ a subset such that the set of values $\left\{f(x): f \in B^{*}\right\}$ is bounded for each $x \in E$. Show that B^{*} is bounded.
Solution: The principle of uniform boundedness implies the existence of a constant $C \geqslant 0$ such that

$$
\sup _{f \in B^{*}} \sup _{x \in B \leqslant 1}(0)|f(x)| \leqslant C .
$$

In other words, we get

$$
\sup _{f \in B^{*}}\|f\| \leqslant C
$$

which means that B^{*} is bounded.
2. Let E, F be Banach spaces and $f: E \times F \rightarrow \mathbb{K}$ a bilinear form such that
(a) the map $x \in E \mapsto f(x, y) \in \mathbb{K}$ is continuous for all $y \in F$,
(b) the map $y \in F \mapsto f(x, y) \in \mathbb{K}$ is continuous for all $x \in E$.

Prove that there exists $C \geqslant 0$ such that $|f(x, y)| \leqslant C\|x|\|\mid\| y \|$ for all $x \in E$ and $y \in F$.
Solution: We give two solutions. Consider the set $B^{*}=\{f(x, \cdot):\|x\| \leqslant 1\} \subset E^{*}$. By the second assumption the set $\{f(x, y):\|x\| \leqslant 1\}$ is bounded for each $y \in F$. By exercise 1 , there exists a constant C such that $\|f(x, \cdot)\| \leqslant C$ for all $\|x\| \leqslant 1$. This implies $|f(x, y)| \leqslant C| | x|\|| | y\|$ by definition of the operator norm.
Here is another solution using the closed graph theorem. For each $x \in E$ define the functional $f_{x}(y):=f(x, y)$. The statement of the exercise is equivalent to proving that the map

$$
x \in E \mapsto f_{x} \in F^{*}
$$

is continuous. Consider a Cauchy sequence $\left(x_{n}, f_{x_{n}}\right) \in E \times F^{*}$ with limit (x, g). Then we have

$$
g(y)=\lim _{n \rightarrow \infty} f\left(x_{n}, y\right)=f\left(\lim _{n \rightarrow \infty} x_{n}, y\right)=f(x, y)
$$

for all $y \in Y$. This implies that the graph of the mapping $x \in E \mapsto f_{x} \in F^{*}$ is closed, so the map must be continuous by the closed graph theorem.
3. Assume V is a vector space endowed with two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$, such that $\left(V,\|\cdot\|_{1}\right)$ and $\left(V,\|\cdot\|_{2}\right)$ are Banach spaces. Suppose there exists $C \geqslant 0$ such that $\|v\|_{1} \leqslant C\|v\|_{2}$ for all $v \in V$. Prove that there exists $K \geqslant 0$ such that $\|v\|_{2} \leqslant K\|v\|_{1}$ for all $v \in V$.
Solution: The assumption implies that the mapping $\left(V,\|\cdot\|_{1}\right) \rightarrow\left(V,\|\cdot\|_{2}\right)$ is continuous. By the open mapping theorem, the inverse $\left(V,\left\|\cdot{ }_{2}\right\|\right) \rightarrow\left(V,\left\|\cdot{ }_{1}\right\|\right)$ is continuous. Thus there exists a constant $K>0$ with $\|v\|_{2} \leqslant K\|v\|_{1}$ for all $v \in V$.
4. Let $C([0,1])$ and $C^{1}([0,1])$ both be endowed with $\|f\|_{\infty}:=\sup _{x \in[0,1]}|f(x)|$. Show that the derivative

$$
\begin{aligned}
C^{1}([0,1]) & \rightarrow C([0,1]) \\
f & \mapsto f^{\prime}
\end{aligned}
$$

is an unbounded operator, but has a closed graph.
Solution: Let $n \in \mathbb{N}$ and consider the function $f(x)=x^{n}$. This function satisfies $\|f\|=1$ but $\left\|f^{\prime}\right\|=n$, so the derivative can not be a bounded operator.
Consider a Cauchy sequence $\left(f_{n}, f_{n}^{\prime}\right)$ in the graph with limit (f, g). To prove the graph is closed means to prove $f^{\prime}=g$. Note that $\lim _{n \rightarrow \infty}\left\|f_{n}^{\prime}-g\right\|=0$ by assumption. Let $x \in \mathbb{R}$ then

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \lim _{n \rightarrow \infty} \frac{f_{n}(x+h)-f_{n}(x)}{h}
\end{aligned}
$$

For each $n \in \mathbb{N}$ and small enough $h>0$ the mean value theorem shows that there is $\xi \in(x, x+h)$ with $f_{n}(x+h)-f_{n}(x)=h f_{n}^{\prime}(\xi)$. This implies

$$
\frac{f_{n}(x+h)-f_{n}(x)}{h}=f_{n}^{\prime}(\xi)=\left(f_{n}^{\prime}(\xi)-g(\xi)\right)+(g(\xi)-g(x))+g(x)=g(x)+o(1)
$$

as $h \rightarrow 0$. Combining the formulas yields

$$
\lim _{h \rightarrow 0} \lim _{n \rightarrow \infty} \frac{f_{n}(x+h)-f_{n}(x)}{h}=g(x)
$$

