Exercise Sheet 7 - Solutions

1. Let $E \subset V$ be a closed subspace of a Banach space V. Prove: There exists a closed complement to E if and only if there exists a continuous linear map $P: V \rightarrow V$ with $P^{2}=P$ and $\operatorname{im}(P)=E$.
Solution: Let $F \subset V$ be a closed complement to E in V. The open mapping theorem proves that the map $(e, f) \in E \times F \mapsto e+v \in V$ has a continuous inverse $\varphi: V \rightarrow E \times F$. We construct P as the composition

$$
V \xrightarrow{\varphi} E \times F \xrightarrow{(e, f) \mapsto e} E \xrightarrow{e \mapsto e} V
$$

The composition of the first two arrows $V \rightarrow E$ is surjective, so the image of P is E. Note that P maps each $v \in V$ to the unique $e \in E$ such that there exists $f \in F$ with $f+e=v$. We get $P^{2}(v)-P(v) \in E \cap F$ for each $v \in V$. The subspaces E and F are complementary, so $E \cap F=0$. This implies $P^{2}=P$.
Let $P: V \rightarrow V$ be a continuous, linear map with $\operatorname{im}(P)=E$. Set $F:=\operatorname{ker}(P)$. Note that $v=P(v)+(v-P(v))$ for each $v \in V$, so $E+F=V$. Let $v \in E \cap F$ then there exists $w \in V$ with $P(w)=v$. We have the equalities

$$
v=P(w)=P^{2}(w)=P(v)=0
$$

so $E \cap F=0$. Moreover, the subspace $F=P^{-1}(\{0\})$ is closed because P is continuous.
2. Let $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$ be Banach spaces and $T: V \rightarrow W$ a surjective, linear, and continuous map. Show that the following are equivalent:
(a) The closed subspace $\operatorname{ker}(T)$ admits a closed complement in V.
(b) There is a linear, continuous map $S: W \rightarrow V$ with $T \circ S=\mathrm{id}_{W}$.

Solution: \quad Set $E:=\operatorname{ker}(T)$.
Suppose F is a closed complement to E. The open mapping theorem shows that $\left.T\right|_{F}: F \rightarrow W$ admits a continuous inverse $\tilde{S}: W \rightarrow F$. We can compose this map with the inclusion $F \rightarrow V$ to get a continuous map $S: W \rightarrow V$. Let $w \in W$, then $T(S(w))=\left.T\right|_{F}(\tilde{S}(w))=w$.
Let $S: W \rightarrow V$ be a linear, continuous map with $T \circ S=\operatorname{id}_{W}$. Let $F=\operatorname{im}(S)$ be a normed subspace of V. Note that S is injective, so the map $\bar{S}: W \rightarrow F$ is bijective. The inverse of \bar{S} is given by $\left.T\right|_{F}$, so \bar{S} is a homeomorphism. This implies that F is a Banach space and hence that F is closed in V because every Cauchy sequence in F has a limit in F. We can write $v=(S(T(v))-v)+S(T(v)) \in E+F$ for every $v \in V$. Let $v \in E \cap F$ then there is $w \in W$ with $v=S(w)$. We get

$$
v=S(w)=S(T(S(w)))=S(T(v))=0
$$

so $E \cap F=0$.
3. Show that the subspaces

$$
\begin{aligned}
V & :=\left\{f \in \ell^{1}(\mathbb{N}): f(2 n)=0 \forall n \geqslant 0\right\} \\
W & :=\left\{f \in \ell^{1}(\mathbb{N}): f(2 n-1)=n f(2 n) \forall n \geqslant 1\right\}
\end{aligned}
$$

are closed in $\ell^{1}(\mathbb{N})$ while $V+W$ is not closed.
Hint: Show $V+W \supset c_{00}(\mathbb{N})$.
Solution: The evaluation maps $\operatorname{ev}_{n}(f):=f(n)$ are continuous because $\left|\operatorname{ev}_{n}(f)\right| \leqslant\|f\|_{1}$ for all $n \in \mathbb{N}$. The spaces V and W are therefore intersections of kernels of continuous functionals. This implies they are closed.
Let $f \in c_{00}(\mathbb{N})$ and $N \in \mathbb{N}$ such that $f(n)=0$ for all $n>N$. We prove by induction on N that $f \in V+W$. If $N=0$, then f is supported at 0 . In particular, $f \in W$. If N is odd then define

$$
v(n):= \begin{cases}0 & n \neq N \\ f(n) & n=N\end{cases}
$$

The function $f-v$ satisfies $(f-v)(n)=0$ for all $n \geqslant N$, so the induction hypothesis implies $f-v \in V+W$. Because $v \in V$, this implies $f \in V+W$. If N is even and $N>0$ then define

$$
w(n):= \begin{cases}0 & n \neq N, N-1 \\ f(n) & n=N \\ \frac{N}{2} f(n) & n=N-1\end{cases}
$$

The above proof applies almost identically to this case as well.
Suppose $V+W$ is closed then $V+W=\ell^{1}(\mathbb{N})$. Let $f \in \ell^{1}(\mathbb{N})$ then there exist unique $v \in V$ and $w \in W$ with $v+w=f$. Note that $f(2 n)=w(2 n)$ for all $n \in \mathbb{N}$. When we set $f(n):=\frac{1}{n^{2}}$ for $n \geqslant 1$ and $f(0)=0$, then $w(2 n)=\frac{1}{4 n^{2}}$ for $n \geqslant 1$, so $w(2 n-1)=\frac{1}{4 n}$. This implies

$$
\sum_{n \geqslant 1} \frac{1}{4 n}+\frac{1}{2 n^{2}}<\infty
$$

which is a contradiction.
4. Show that there is a bounded set function $p: \mathscr{P}(\mathbb{N}) \rightarrow \mathbb{R}$ such that
(a) $p(\mathbb{N})=1$,
(b) $p(A \cup B)=p(A)+p(B)$ whenever $A \cap B$ is finite.

Solution: Consider the real vector space $\ell^{\infty}(\mathbb{N})$ of bounded functions $\mathbb{N} \rightarrow \mathbb{R}$. Suppose we have constructed a linear map $\varphi: \ell^{\infty}(\mathbb{N}) \rightarrow \mathbb{R}$ with $|\varphi(f)| \leqslant\|f\|_{\infty}$ for all $f \in \ell^{\infty}(\mathbb{N})$, and $\varphi\left(1_{\mathbb{N}}\right)=1$ and $f\left(1_{A}\right)=0$ for every finite subset $A \subset \mathbb{N}$. The function $p(A):=f\left(1_{A}\right)$ is bounded, satisfies $p(\mathbb{N})=1$, and for two sets $A, B \subset \mathbb{N}$ the inclusion-exclusion identity gives

$$
p(A \cup B)=f\left(1_{A \cap B}\right)=f\left(1_{A}+1_{B}-1_{A \cup B}\right)=p(A)+p(B)-f\left(1_{A \cap B}\right)
$$

In particular, when $A \cap B$ is finite this implies $p(A \cup B)=p(A)+p(B)$. Thus, it suffices to construct a functional with the above properties.
Consider the semi-norm

$$
q(f):=\limsup _{n \rightarrow \infty}|f(n)|
$$

and the functional $\tilde{\varphi}: \lambda 1_{\mathbb{N}} \in \mathbb{R} 1_{\mathbb{N}} \mapsto \lambda \in \mathbb{R}$. The semi-norm q bounds $\tilde{\varphi}$, so by the HahnBanach theorem there exists an extension φ to $\ell^{\infty}(\mathbb{N})$ such that $|\varphi(f)| \leqslant q(f) \leqslant\|f\|_{\infty}$ and $\left|\varphi\left(1_{A}\right)\right| \leqslant q\left(1_{A}\right)=0$ for every finite $A \subset \mathbb{N}$.

