Functional Analysis I

Exercise Sheet 7 - Solutions

1. Let $E \subset V$ be a closed subspace of a Banach space V. Prove: There exists a closed complement to E if and only if there exists a continuous linear map $P: V \to V$ with $P^2 = P$ and im(P) = E.

Solution: Let $F \subset V$ be a closed complement to E in V. The open mapping theorem proves that the map $(e, f) \in E \times F \mapsto e + v \in V$ has a continuous inverse $\varphi: V \to E \times F$. We construct P as the composition

$$V \xrightarrow{\varphi} E \times F \xrightarrow{(e,f) \mapsto e} E \xrightarrow{e \mapsto e} V$$

The composition of the first two arrows $V \to E$ is surjective, so the image of P is E. Note that P maps each $v \in V$ to the unique $e \in E$ such that there exists $f \in F$ with f + e = v. We get $P^2(v) - P(v) \in E \cap F$ for each $v \in V$. The subspaces E and F are complementary, so $E \cap F = 0$. This implies $P^2 = P$.

Let $P: V \to V$ be a continuous, linear map with im(P) = E. Set F := ker(P). Note that v = P(v) + (v - P(v)) for each $v \in V$, so E + F = V. Let $v \in E \cap F$ then there exists $w \in V$ with P(w) = v. We have the equalities

$$v = P(w) = P^2(w) = P(v) = 0,$$

so $E \cap F = 0$. Moreover, the subspace $F = P^{-1}(\{0\})$ is closed because P is continuous.

- 2. Let $(V, || \cdot ||_V)$ and $(W, || \cdot ||_W)$ be Banach spaces and $T: V \to W$ a surjective, linear, and continuous map. Show that the following are equivalent:
 - (a) The closed subspace $\ker(T)$ admits a closed complement in V.
 - (b) There is a linear, continuous map $S: W \to V$ with $T \circ S = id_W$.

Solution: Set $E := \ker(T)$.

Suppose F is a closed complement to E. The open mapping theorem shows that $T|_F \colon F \to W$ admits a continuous inverse $\tilde{S} \colon W \to F$. We can compose this map with the inclusion $F \to V$ to get a continuous map $S \colon W \to V$. Let $w \in W$, then $T(S(w)) = T|_F(\tilde{S}(w)) = w$.

Let $S: W \to V$ be a linear, continuous map with $T \circ S = \operatorname{id}_W$. Let $F = \operatorname{im}(S)$ be a normed subspace of V. Note that S is injective, so the map $\overline{S}: W \to F$ is bijective. The inverse of \overline{S} is given by $T|_F$, so \overline{S} is a homeomorphism. This implies that F is a Banach space and hence that F is closed in V because every Cauchy sequence in F has a limit in F. We can write $v = (S(T(v)) - v) + S(T(v)) \in E + F$ for every $v \in V$. Let $v \in E \cap F$ then there is $w \in W$ with v = S(w). We get

$$v = S(w) = S(T(S(w))) = S(T(v)) = 0,$$

so $E \cap F = 0$.

Functional Analysis I

D-MATH Prof. Marc Burger

3. Show that the subspaces

$$V := \{ f \in \ell^1(\mathbb{N}) : f(2n) = 0 \ \forall n \ge 0 \}$$
$$W := \{ f \in \ell^1(\mathbb{N}) : f(2n-1) = nf(2n) \ \forall n \ge 1 \}$$

are closed in $\ell^1(\mathbb{N})$ while V + W is not closed.

Hint: Show $V + W \supset c_{00}(\mathbb{N})$.

Solution: The evaluation maps $ev_n(f) := f(n)$ are continuous because $|ev_n(f)| \leq ||f||_1$ for all $n \in \mathbb{N}$. The spaces V and W are therefore intersections of kernels of continuous functionals. This implies they are closed.

Let $f \in c_{00}(\mathbb{N})$ and $N \in \mathbb{N}$ such that f(n) = 0 for all n > N. We prove by induction on N that $f \in V + W$. If N = 0, then f is supported at 0. In particular, $f \in W$. If N is odd then define

$$v(n) := \begin{cases} 0 & n \neq N \\ f(n) & n = N. \end{cases}$$

The function f - v satisfies (f - v)(n) = 0 for all $n \ge N$, so the induction hypothesis implies $f - v \in V + W$. Because $v \in V$, this implies $f \in V + W$. If N is even and N > 0 then define

$$w(n) := \begin{cases} 0 & n \neq N, N-1 \\ f(n) & n = N \\ \frac{N}{2}f(n) & n = N-1. \end{cases}$$

The above proof applies almost identically to this case as well.

Suppose V + W is closed then $V + W = \ell^1(\mathbb{N})$. Let $f \in \ell^1(\mathbb{N})$ then there exist unique $v \in V$ and $w \in W$ with v + w = f. Note that f(2n) = w(2n) for all $n \in \mathbb{N}$. When we set $f(n) := \frac{1}{n^2}$ for $n \ge 1$ and f(0) = 0, then $w(2n) = \frac{1}{4n^2}$ for $n \ge 1$, so $w(2n-1) = \frac{1}{4n}$. This implies

$$\sum_{n \ge 1} \frac{1}{4n} + \frac{1}{2n^2} < \infty,$$

which is a contradiction.

- 4. Show that there is a bounded set function $p: \mathscr{P}(\mathbb{N}) \to \mathbb{R}$ such that
 - (a) $p(\mathbb{N}) = 1$,
 - (b) $p(A \cup B) = p(A) + p(B)$ whenever $A \cap B$ is finite.

Solution: Consider the real vector space $\ell^{\infty}(\mathbb{N})$ of bounded functions $\mathbb{N} \to \mathbb{R}$. Suppose we have constructed a linear map $\varphi \colon \ell^{\infty}(\mathbb{N}) \to \mathbb{R}$ with $|\varphi(f)| \leq ||f||_{\infty}$ for all $f \in \ell^{\infty}(\mathbb{N})$, and $\varphi(1_{\mathbb{N}}) = 1$ and $f(1_A) = 0$ for every finite subset $A \subset \mathbb{N}$. The function $p(A) := f(1_A)$ is bounded, satisfies $p(\mathbb{N}) = 1$, and for two sets $A, B \subset \mathbb{N}$ the inclusion-exclusion identity gives

$$p(A \cup B) = f(1_{A \cap B}) = f(1_A + 1_B - 1_{A \cup B}) = p(A) + p(B) - f(1_{A \cap B}).$$

HS 2023

D-MATH Prof. Marc Burger

In particular, when $A \cap B$ is finite this implies $p(A \cup B) = p(A) + p(B)$. Thus, it suffices to construct a functional with the above properties.

Consider the semi-norm

$$q(f) := \limsup_{n \to \infty} |f(n)|$$

and the functional $\tilde{\varphi} : \lambda 1_{\mathbb{N}} \in \mathbb{R} 1_{\mathbb{N}} \mapsto \lambda \in \mathbb{R}$. The semi-norm q bounds $\tilde{\varphi}$, so by the Hahn-Banach theorem there exists an extension φ to $\ell^{\infty}(\mathbb{N})$ such that $|\varphi(f)| \leq q(f) \leq ||f||_{\infty}$ and $|\varphi(1_A)| \leq q(1_A) = 0$ for every finite $A \subset \mathbb{N}$.