Functional Analysis I

D-MATH Prof. Marc Burger

Exercise Sheet 8 - Solutions

1. Prove Proposition V.11 and Corollary V.12.

Solution: We begin by proving Proposition V.11. Note that (i) is equivalent to (ii) because addition is continuous in topological vector spaces. Let $|| \cdot ||_{\beta}$ be a continuous seminorm on $W, \mathscr{F} = (|| \cdot ||_{\alpha})_{\alpha \in \mathscr{F}}$ a set of continuous seminorms on V and r > 0. The condition

$$N(0;\mathscr{F};r) \subset T^{-1}(N(0;\beta;1))$$

is equivalent to

$$\sup\left\{||Tx||_{\beta}\right| \,\forall \alpha \in \mathscr{F} : ||x||_{\alpha} \leqslant 1\right\} < \frac{1}{r}.$$

This shows that (ii) is equivalent to (iii).

If we regard the topology on \mathbb{R} as the topology induced by $|\cdot|$, then Proposition V.11 says that continuity of a functional $f: V \to \mathbb{R}$ is equivalent to the existence of a finite set of continuous seminorms \mathscr{F} on V with

$$\sup\left\{||f(x)|| \forall \alpha \in \mathscr{F} : ||x||_{\alpha} \leq 1\right\} < +\infty.$$

2. Let V be a finite-dimensional normed space. Show that the weak topology and the norm topology on V coincide.

Solution: Consider a basis (f_1, \ldots, f_n) of V^* and define the seminorms $||v||_i := |f(v_i)|$ for $i = 1, \ldots, n$. Any functional $f \in V^*$ is continuous with respect to the topology defined by the seminorms $||\cdot||_i$ because we can write $f = \lambda_1 f_1 + \cdots + \lambda_n f_n$ and then

$$|f(v)| \leq |\lambda_1|||v||_1 + \dots + |\lambda_n|||v||_n$$

for all $v \in V$. This implies the weak topology is generated by the finite set $|| \cdot ||_i$. In particular, the weak topology is the topology defined by the norm

$$||\cdot|| := ||\cdot||_1 + \dots + ||\cdot||_n.$$

Thus the weak topology coincides with the (unique) norm topology on V.

3. Let X be a set, $\mathscr{F} = \{(\varphi, Y_i) : i \in I\}$ a family of pairs consisting of topological spaces Y_i with a map $\varphi_i : X \to Y_i$ and equip X with the initial topology with respect to \mathscr{F} . Prove that a sequence $(x_n)_n \in X$ converges to $x \in X$ if and only if $\varphi_i(x_n)$ converges to $\varphi_i(x)$ for all $i \in I$.

Solution: Suppose $(x_n)_{n \in \mathbb{N}}$ is a sequence in X. If the sequence has a limit point $x \in X$ then $\varphi_i(x)$ is a limit point of $(\varphi_i(x_n))_{n \in \mathbb{N}}$ for each $i \in I$ because the functions are continuous. For the other direction, define

$$\mathcal{B} := \bigcup_{i \in I} \{ \varphi_i^{-1}(V) | V \subset Y_i \text{ open} \} \subset \mathcal{P}(X).$$

HS 2023

D-MATH Prof. Marc Burger

Equip X with the topology whose opens are unions of finite intersections $U_1 \cap \cdots \cup U_n$ with $U_i \in \mathcal{B}$. This is the smallest topology which contains \mathcal{B} and hence the initial topology.

Suppose there exists $x \in X$ such that $\varphi_i(x)$ is a limit point of $\varphi_i(x_n)$ for all $i \in I$. Let W be a generic neighborhood of $x \in X$. There exists $i_1, \ldots, i_m \in I$ and opens $V_j \subset Y_{i_j}$ such that

$$x \in \bigcap_{j} \varphi_{i_j}^{-1}(V_j) \subset W$$

because such sets form a basis for the topology. There exists $N \ge 0$ such that $\varphi_{i_j}(x_n) \in V_{i_j}$ for each j and $n \ge N$. In particular, we get $x_n \in W$ for all $n \ge N$. This implies that x is a limit point of $(x_n)_n$.

4. Show that on $L^2_{loc}(\mathbb{R})$ (where we take the Lebesgue measure) there is no norm inducing the topology defined in Example V.10.

Solution: Suppose $L^2_{loc}(\mathbb{R})$ is a normed space with norm $|| \cdot ||$. Set

$$\mathscr{F} := \{ || \cdot ||_{L^2(K)} | K \subset \mathbb{R} \text{ compact} \}$$

then the map

$$(V, \mathscr{F}) \to (V, || \cdot ||)$$

is continuous because both sets of seminorms define the same topology. Exercise 1 implies that there is a constant C > 0 and compact subsets $K_1, \ldots, K_n \subset \mathbb{R}$ such that

$$||f|| \leq C \max\{||f||_{L^2(K_i)}| \ i = 1, \dots, n\}.$$

Let $K = K_1 \cup \cdots \cup K_n$. The above inequality implies

$$||\chi_{\mathbb{R}\backslash K}|| = 0$$

and therefore $\chi_{\mathbb{R}\setminus K} = 0$. But the set K is compact which means $\mathbb{R}\setminus K$ is a non-empty open set and hence $\chi_{\mathbb{R}\setminus K} \neq 0$. This is the desired contradiction.