D-MATH Prof. Marc Burger Functional Analysis I

Exercise Sheet 9

- 1. Let $T: V \to W$ be a bounded linear operator of normed spaces. Prove that the adjoint $T^*: W^* \to V^*$ is continuous in the weak*-topology on W^* and V^* .
- 2. Let V be a normed space. Assume that $f: V \to \mathbb{K}$ is a linear form that is continuous w.r.t. the weak topology on V. Show that f is strongly continuous.
- 3. For each $n \ge 1$ define

$$\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{k/n}.$$

What is the weak*-limit of the sequence μ_n as $n \to \infty$?

4. Let V be a normed space. Show that any linear form $\lambda: V^* \to \mathbb{K}$ that is continuous with respect to the weak*-topology is of the form $\lambda(f) = f(v)$ for some $v \in V$.

Hint: The solution is similar to the solution of Exercise 2.