Functional Analysis I

Exercise Sheet 9 - Solutions

1. Let $T: V \to W$ be a bounded linear operator of normed spaces. Prove that the adjoint $T^*: W^* \to V^*$ is continuous in the weak*-topology on W^* and V^* .

Solution: Define the evaluation map $ev_v(f) := f(v)$ for each $v \in V$ or $v \in W$. Let $v \in V$, then, by Lemma V. 19, we need to prove that the map $ev_v \circ T^*$ is weakly continuous. We have

$$(ev_v \circ T^*)(f) = (T^*f)(v) = f(Tv) = ev_{Tv}(f).$$

So the map $ev_v \circ T^*$ is an evaluation map and hence continuous in the weak*-topology.

2. Let V be a normed space. Assume that $f: V \to \mathbb{K}$ is a linear form that is continuous w.r.t. the weak topology on V. Show that f is strongly continuous.

Solution: We give two solutions to this exercise. By Proposition V.11, there exist $f_1, \ldots, f_n \in V^*$ such that if $|f_i(v)| \leq 1$ then $|f(v)| \leq 1$. If $v \in V$ satisfies $f_i(v) \neq 0$ for some f_i then this implies

$$|f(v)| \leq |f_1(v)| + \dots + |f_n(v)|.$$

Let $v \in V$ such that $f_i(v) = 0$ for all f_i . We have $f_i(\lambda v) = 0$ for each $\lambda \in \mathbb{R}$ and hence $|f(\lambda v)| \leq 1$. This implies f(v) = 0, so we get the inequality

$$|f(v)| \leq |f_1(v)| + \dots + |f_n(v)|.$$

for all $v \in V$. This implies

$$|f(v)| \leq (||f_1|| + \dots + ||f_n||)||v||$$

for each $v \in V$.

The second solution goes as follows. Let $U \subset \mathbb{R}$ be open, then the set $f^{-1}(U)$ is weakly open because f is weakly continuous. The weak topology on V is coarser than the strong topology, so the set $f^{-1}(U)$ is open. Because U was arbitrary this implies that f is continuous.

3. For each $n \ge 1$ define

$$\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{i/n}.$$

What is the weak*-limit of the sequence μ_n as $n \to \infty$?

Solution: Let $f \in C([0,1])$. Because f is continuous it is Riemann integrable. In particular, we have

$$\int_{0}^{1} f(x) dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(i/n).$$

So the weak*-limit of μ_n is the integral $f \mapsto \int_0^1 f(x) dx$.

D-MATH Prof. Marc Burger

4. Let V be a normed space. Show that any linear form $\lambda: V^* \to \mathbb{K}$ that is continuous with respect to the weak*-topology is of the form $\lambda(f) = f(v)$ for some $v \in V$.

Hint: The solution is similar to the solution of Exercise 2.

Solution: There exist $v_1, \ldots, v_n \in V$ such that

$$|\lambda(f)| \leq |f(v_1)| + \dots + |f(v_n)|$$

for all $f \in V^*$ by the same argument as in Exercise 2. So the functional λ vanishes on the strongly closed subspace

$$W := \{ f \in V^* | f(v_i) = 0 \}.$$

Let $U := \langle v_1, \ldots, v_n \rangle \subset V$ and denote by $i: U \to V$ the inclusion. The kernel of i^* is W and i^* is surjective. Because the functional λ vanishes on W, this implies that we can factor λ as

$$V^* \xrightarrow{i^*} U^* \xrightarrow{\overline{\lambda}} \mathbb{K}$$

Thus the adjoint λ^* factors as

$$\mathbb{K} \xrightarrow{\overline{\lambda}^*} U^{**} \xrightarrow{i^{**}} V^{**}$$

Because U is finite-dimensional, there exists $u \in U$ with $\overline{\lambda}(1) = ev_u$. This implies

$$\lambda = \lambda^*(1) = i^{**}(\operatorname{ev}_u) = \operatorname{ev}_{i(u)}.$$