Exercise Sheet 9 - Solutions

1. Let $T: V \rightarrow W$ be a bounded linear operator of normed spaces. Prove that the adjoint $T^{*}: W^{*} \rightarrow V^{*}$ is continuous in the weak*-topology on W^{*} and V^{*}.
Solution: Define the evaluation map $\operatorname{ev}_{v}(f):=f(v)$ for each $v \in V$ or $v \in W$. Let $v \in V$, then, by Lemma V. 19, we need to prove that the map $\mathrm{ev}_{v} \circ T^{*}$ is weakly continuous. We have

$$
\left(\mathrm{ev}_{v} \circ T^{*}\right)(f)=\left(T^{*} f\right)(v)=f(T v)=\mathrm{ev}_{T v}(f)
$$

So the map $\mathrm{ev}_{v} \circ T^{*}$ is an evaluation map and hence continuous in the weak*-topology.
2. Let V be a normed space. Assume that $f: V \rightarrow \mathbb{K}$ is a linear form that is continuous w.r.t. the weak topology on V. Show that f is strongly continuous.
Solution: We give two solutions to this exercise. By Proposition V.11, there exist $f_{1}, \ldots, f_{n} \in$ V^{*} such that if $\left|f_{i}(v)\right| \leqslant 1$ then $|f(v)| \leqslant 1$. If $v \in V$ satisfies $f_{i}(v) \neq 0$ for some f_{i} then this implies

$$
|f(v)| \leqslant\left|f_{1}(v)\right|+\cdots+\left|f_{n}(v)\right|
$$

Let $v \in V$ such that $f_{i}(v)=0$ for all f_{i}. We have $f_{i}(\lambda v)=0$ for each $\lambda \in \mathbb{R}$ and hence $|f(\lambda v)| \leqslant 1$. This implies $f(v)=0$, so we get the inequality

$$
|f(v)| \leqslant\left|f_{1}(v)\right|+\cdots+\left|f_{n}(v)\right|
$$

for all $v \in V$. This implies

$$
|f(v)| \leqslant\left(\left\|f_{1}\right\|+\cdots+\left\|f_{n}\right\|\right)\|v\|
$$

for each $v \in V$.
The second solution goes as follows. Let $U \subset \mathbb{R}$ be open, then the set $f^{-1}(U)$ is weakly open because f is weakly continuous. The weak topology on V is coarser than the strong topology, so the set $f^{-1}(U)$ is open. Because U was arbitrary this implies that f is continuous.
3. For each $n \geqslant 1$ define

$$
\mu_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{i / n}
$$

What is the weak*-limit of the sequence μ_{n} as $n \rightarrow \infty$?
Solution: Let $f \in C([0,1])$. Because f is continuous it is Riemann integrable. In particular, we have

$$
\int_{0}^{1} f(x) d x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f(i / n)
$$

So the weak*-limit of μ_{n} is the integral $f \mapsto \int_{0}^{1} f(x) d x$.
4. Let V be a normed space. Show that any linear form $\lambda: V^{*} \rightarrow \mathbb{K}$ that is continuous with respect to the weak*-topology is of the form $\lambda(f)=f(v)$ for some $v \in V$.
Hint: The solution is similar to the solution of Exercise 2.
Solution: There exist $v_{1}, \ldots, v_{n} \in V$ such that

$$
|\lambda(f)| \leqslant\left|f\left(v_{1}\right)\right|+\cdots+\left|f\left(v_{n}\right)\right|
$$

for all $f \in V^{*}$ by the same argument as in Exercise 2. So the functional λ vanishes on the strongly closed subspace

$$
W:=\left\{f \in V^{*} \mid f\left(v_{i}\right)=0\right\} .
$$

Let $U:=\left\langle v_{1}, \ldots, v_{n}\right\rangle \subset V$ and denote by $i: U \rightarrow V$ the inclusion. The kernel of i^{*} is W and i^{*} is surjective. Because the functional λ vanishes on W, this implies that we can factor λ as

$$
V^{*} \xrightarrow{i^{*}} U^{*} \xrightarrow{\bar{\lambda}} \mathbb{K}
$$

Thus the adjoint λ^{*} factors as

$$
\mathbb{K} \xrightarrow{\bar{\lambda}^{*}} U^{* *} \xrightarrow{i^{* *}} V^{* *}
$$

Because U is finite-dimensional, there exists $u \in U$ with $\bar{\lambda}(1)=\mathrm{ev}_{u}$. This implies

$$
\lambda=\lambda^{*}(1)=i^{* *}\left(\mathrm{ev}_{u}\right)=\mathrm{ev}_{i(u)}
$$

