Exercise Sheet 10

To be handed in until November 29

1. Optimal embedding of product of spheres

What is the lowest dimension d such that $S^m \times S^n$ embeds into \mathbb{R}^d ?

2. Compact manifolds need at least one dimension higher to immerse

Prove that a compact *n*-dimensional manifold cannot be immersed into \mathbb{R}^n .

3. More about the tangent space

- (a) Prove $\pi: TM \to M$ is a submersion.
- (b) Show that TM is always orientable (even if M is not).

4. Orthogonal and unitary matrices as submanifolds

- (a) Prove that O(n) and SO(n) are compact submanifold of $\mathbb{R}^{n \times n}$. Prove that O(n) has two connected components.
- (b) Prove that

$$U(n) := \{ A \in \mathbb{C}^{n \times n} \mid \overline{A^T} A = I \},\$$

$$SU(n) := \{ A \in U(n) \mid \det U = 1 \}$$

are both compact submanifolds of $\mathbb{C}^{n \times n} \cong \mathbb{R}^{2n^2}$.

- (c) Compute the tangent spaces $T_I U(n)$ and $T_I SU(n)$ at the identity I.
- (d) Are U(n) and SU(n) connected?

5. The complex projective space

Let $\mathbb{CP}^n := \{ \text{complex lines in } \mathbb{C}^{n+1} \text{ through the origin} \}.$ Define the function $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ by

$$z = (z^0, \dots, z^n) \mapsto [z] = \{\lambda z \,|\, \lambda \in \mathbb{C}\} \in \mathbb{CP}^n.$$

- (a) Find coordinate charts that make \mathbb{CP}^n into a smooth 2*n*-manifold.
- (b) Observe that $\mathbb{CP}^1 \cong S^2$.
- (c) Let $S^{2n+1} := \{z \in \mathbb{C}^{n+1} | |z| = 1\}$. The map $h : S^{2n+1} \to \mathbb{C}\mathbb{P}^n$ given by h(z) := [z] is called the *Hopf fibration*. Prove that h is a submersion. The fibers $h^{-1}(q), q \in \mathbb{C}\mathbb{P}^n$, yield a decomposition of S^{2n+1} into circles.
- (d) Observe that in the case n = 1 we get the classical Hopf fibration

$$h: S^3 \to S^2$$

as defined in exercise sheet 7.