Exercise Sheet 12

To be handed in until December 13

1. The tangent space of an implicitly defined submanifold

Let $f: M \to N$ be smooth and q a regular value of f. Set $P := f^{-1}(q)$. Prove:

$$T_p P = \ker(Df_p)$$

for all $p \in P$.

2. Groups covered by SU(n)

Let $n \geq 1$.

- (a) Find the center of SU(n).
- (b) Show that SU(n) covers only a finite number of groups.(N.B. SU(n) is simply-connected.)

3. Relation of flows and Lie brackets

We shall see later that ϕ_X^t commutes with ϕ_Y^t iff [X, Y] = 0.

(a) Given $v, w \in \mathbb{R}^3$, recall the two vector fields defined in exercise sheet 11 problem 1:

 $T_v(x) = v,$ $R_w(x) = w \times x$ for $x \in \mathbb{R}^3.$

Describe the flows $\phi_{T_v}^t, \phi_{R_v}^t$ geometrically.

- (b) Determine by geometric reasoning conditions on v, w such that the flows $\phi_{T_v}^t, \phi_{R_w}^t$ commute.
- (c) Determine by computation conditions on v, w such that the Lie brackets $[T_v, R_w]$ vanishes.

4. Vector fields on matrix manifold

Fix a matrix $A \in \mathbb{R}^{n \times n}$. Define a vector field on $\mathbb{R}^{n \times n}$ by

$$X_A(B) = AB,$$
 for $B \in \mathbb{R}^{n \times n}$.

- (a) Show that X_A is complete.
- (b) Find a formula for the flow $\phi_{X_A}^t$.

5. An explicit example of a flow

Let X be the vector field on \mathbb{R}^2 given by X(x,y) = (rx - x - y, ry + x - y)where $r = \sqrt{x^2 + y^2}$.

- (a) Draw the vector field X.
- (b) Find the flow ϕ_X^t of X.

Hint: Work in polar coordinates.

- (c) Draw the (open) domain of definition of ϕ_X .
- (d) Is X complete? Restricted to which open subsets of \mathbb{R}^2 is the vector field X complete?