Exercise Sheet 13

To be handed in until December 20

1. Pushforward and pullback of vector fields

Let $\phi: M \rightarrow N$ be smooth, X a smooth vector field on M and Y a smooth vector field on N.

Define the pushforward of X by ϕ via

$$
\phi_{*}(X)(q):=D_{\phi^{-1}(q)} \phi\left(X\left(\phi^{-1}(q)\right)\right) .
$$

Define the pullback of Y by ϕ via

$$
\phi^{*}(Y)(p):=\left(D_{p} \phi\right)^{-1}(Y(\phi(p)))
$$

(a) Show that if ϕ is bijective, $\phi_{*}(X)$ is defined.
(b) Show that if ϕ is a diffeomorphism, $\phi_{*}(X) \in C^{\infty}(T N)$.
(c) Give an example where ϕ is bijective but $\phi_{*}(X)$ not smooth.
(d) Show that if ϕ is a local diffeomorphism, $\phi^{*}(Y)$ is defined and is in $C^{\infty}(T M)$.
(e) Suppose $\phi: M \rightarrow N$ and $\psi: N \rightarrow P$ are diffeomorphisms. Show

$$
\begin{aligned}
\phi^{*} \psi^{*} & =(\psi \circ \phi)^{*}, \quad \psi_{*} \phi_{*}=(\psi \circ \phi)_{*} \\
\phi^{*} \phi_{*} & =i d_{C \infty}(T M), \quad\left(\phi^{-1}\right)^{*}=\phi_{*}
\end{aligned}
$$

2. Another flow example

Let $M=\mathbb{R}^{2} \backslash\{0\}$ and consider the vector field $X(p)=\frac{\partial}{\partial x}$ for all $p \in M$. Define $b(p)$ to be the maximal (positive) time of existence for the flow of X starting at $p \in M$.
(a) Compute $b(p)$ for all $p \in M$.
(b) Verify that

$$
b(p)=\liminf _{q \rightarrow p} b(q)
$$

for all $p \in M$.
(c) Find the points where $\lim _{q \rightarrow p} b(q)$ does not exist.
(d) Verify directly that the maximal domain of existence

$$
\mathcal{U}=\{(p, t) \mid x \in M, a(p)<t<b(p)\}
$$

is open.

3. Left-invariant and right-invariant vector fields on matrix groups

Let $G=G l(n, \mathbb{R}) \subset \mathbb{R}^{n \times n}$ be the (Lie) group of invertible matrices. For A in $\mathbb{R}^{n \times n}$ define vector fields $X_{A}, Y_{A} \in C^{\infty}(T G)$ by

$$
X_{A}(B):=A B, \quad Y_{A}(B):=B A
$$

for $B \in G$.
For $C \in G$ define maps $L_{C}, R_{C}: G \rightarrow G$ by

$$
L_{C}(B):=C B, \quad R_{C}(B):=B C^{-1}
$$

for $B \in G$. These maps are called left and right translation by C.
(a) Verify

$$
L_{C} \circ L_{D}=L_{C D}, \quad R_{C} \circ R_{D}=R_{C D}
$$

(b) Conclude that L, R are injective homomorphisms $L, R: G \rightarrow \operatorname{Diff}(G)$.
(c) We call a vector field $Z \in C^{\infty}(T G)$

- left-invariant if $L_{C}^{*}(Z)=Z$ for all $C \in G$,
- right-invariant if $R_{C}^{*}(Z)=Z$ for all $C \in G$.

Which of X_{A}, Y_{A} is left/right-invariant?
(d) Show that any left-invariant or right-invariant vector field on G is either of the form X_{A} or Y_{A}.

4. The Lie bracket and the matrix commutator

In this exercise we will show that

$$
\left[Y_{A}, Y_{B}\right]=Y_{[A, B]}
$$

where $\left[Y_{A}, Y_{B}\right]$ is calculated as the Lie bracket of vector fields and $[A, B]$ is the matrix commutator in $\mathbb{R}^{n \times n}$. In other words, the map $A \mapsto Y_{A}$, from matrices to vector fields, is a Lie algebra homomorphism.
(a) Show that the flow of Y_{A} is $\phi_{Y_{A}}^{t}(C)=C e^{t A}$ for $C \in G=G l(n, \mathbb{R})$.
(b) Show that the derivative of $\phi_{Y_{A}}^{t}$ at C is $D_{C} \phi_{Y_{A}}^{t}(E)=E e^{t A}$ for $E \in \mathbb{R}^{n \times n}$.
(c) We will see next week that the Lie derivative agrees with the Lie bracket. Compute $\left[Y_{A}, Y_{B}\right]$ using that $\left[Y_{A}, Y_{B}\right](C)=\mathcal{L}_{Y_{A}} Y_{B}(C)$ for all $C \in G$.

