Exercise Sheet 14

Not to be handed in

1. Another proof of the Jacobi identity

(a) Let X, Y, Z be smooth vector fields on a manifold. Prove the Jacobi identity

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

using the identity

$$
\phi^{*}[Y, Z]=\left[\phi^{*} Y, \phi^{*} Z\right] .
$$

for $\phi=\phi^{t}$, the local flow of X, and then differentiating at $t=0$.
(b) A derivation on an algebra (A, \cdot) is a linear map $D: A \rightarrow A$ that satisfies the Leibniz rule:

$$
D(y \cdot z)=(D y) \cdot z+y \cdot(D z)
$$

Prove that the Lie derivative L_{X} is a derivation on the nonassociative algebra $\left(C^{\infty}(T M),[\cdot, \cdot]\right)$.

2. Commutation error

Let $\phi_{X}^{s}, \phi_{Y}^{t}$ be the flows of two vector fields X, Y. Show that the following formulas
(a) $\phi_{Y}^{t} \circ \phi_{X}^{s}(x)=x+s X+t Y+O\left(|s|^{2}+|t|^{2}\right)$
(b) $\phi_{Y}^{t} \circ \phi_{X}^{s}(x)-\phi_{X}^{s} \circ \phi_{Y}^{t}(x)=s t[X, Y]+O\left(|s|^{3}+|t|^{3}\right)$
(c) $\phi_{Y}^{-t} \circ \phi_{X}^{-s} \circ \phi_{Y}^{t} \circ \phi_{X}^{s}(x)=x+s t[X, Y]+O\left(|s|^{3}+|t|^{3}\right)$
hold in any coordinate system.

3. Old question, new computation

Given $v, w \in \mathbb{R}^{3}$, recall the vector fields defined in exercise sheet 11 problem 1 :

$$
T_{v}(x)=v, \quad R_{w}(x)=w \times x \quad \text { for } x \in \mathbb{R}^{3} .
$$

We already computed the Lie brackets of these vector fields. Compute

$$
L_{T_{v}} T_{w}, \quad L_{T_{v}} R_{w}, \quad L_{R_{w}} T_{v}, \quad L_{R_{v}} R_{w}
$$

directly using the definition of the Lie derivative.

4. Twigs on a stream

Let X, Y be smooth vector fields. Consider the vector field

$$
Y^{t}=\left(\phi_{X}^{t}\right)_{*}(Y)
$$

(a) Consider the vector field

$$
X(x, y)=\frac{\partial}{\partial x}-y g(x) \frac{\partial}{\partial y}
$$

where $g: \mathbb{R} \rightarrow[0,1]$ is a bump function which is 1 on $[-1,1]$ and 0 outside $[-2,2]$. Draw the vector field X, and the flow ϕ_{X}^{t} by sketching some integral curves.
(b) Draw Y^{t} for $Y=\frac{\partial}{\partial y}$ for different times e.g. $t=0,1,2,5$.
(c) A metaphor for the vector field Y^{t} is "twigs on a stream". Explain. Is this a good metaphor?

5. Parking is difficult

A car moves in the plane \mathbb{R}^{2}, identified with \mathbb{C}. The movement of the car is given by its position $(x(t), y(t)) \in \mathbb{R}^{2}$ and its direction given by the unit vector $\theta \in S^{1}$. Moreover, we assume that the direction of movement always coincides with the direction of the car. Now consider the vector fields

$$
\begin{aligned}
& X(x, y, \theta):=(\cos \theta, \sin \theta, 1) \\
& Y(x, y, \theta):=(\cos \theta, \sin \theta,-1)
\end{aligned}
$$

on the configuration space $M:=\mathbb{R}^{2} \times S^{1}$.
(a) What happens to the car if it moves by X ? If it moves by Y ?
(b) Compute $[X, Y]$.
(c) Why is parking so difficult? Explain fully and carefully.

