Exercise Sheet 2

To be handed in until October 4

1. On curvature and torsion of curves in \mathbb{R}^{3}

(a) Compute the scalar curvature k and torsion l at $t=0$ for the curve

$$
t \mapsto\left(t, a t^{2}, b t^{3}\right) \quad a, b \in \mathbb{R}
$$

(b) Show that if a curve γ in \mathbb{R}^{3} has identically vanishing scalar torsion then γ lies in a plane.
(c) Suppose that a curve γ in \mathbb{R}^{3} has constant scalar curvature and torsion. Show that γ must be a helix.

2. Curvature and torsion determine a curve in \mathbb{R}^{3} up to rigid motion

Prove that any given smooth functions $k(s), l(s)$, with $k(s)>0$ determine a curve in \mathbb{R}^{3} with curvature $k(s)$ and torsion $l(s)$ (where s is the arclength) that is unique up to rigid motion of space (i.e. a composition of rotations and translations).

Hint: Theorem. (Existence and uniqueness for ODEs)
Let $U \subseteq \mathbb{R} \times \mathbb{R}^{n}$ be an open set and let $f: U \rightarrow \mathbb{R}^{n}$ be continuous. Moreover, suppose f is locally Lipschitz in the second coordinate i.e. for all $\left(t_{0}, y_{0}\right) \in U$ there is an open neighbourhood $W \subset U$ of $\left(t_{0}, y_{0}\right)$ and $M>0$ such that $\left|f\left(t, y_{2}\right)-f\left(t, y_{2}\right)\right| \leq M\left|y_{2}-y_{1}\right|$ for all $\left(t, y_{1}\right),\left(t, y_{2}\right) \in W$.

For any $\left(t_{0}, y_{0}\right) \in U$ consider the ODE system

$$
(*)=\left\{\begin{array}{l}
\dot{y}(t)=f(t, y(t)) \\
y\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

Then
i (Existence) There exists a small open interval I containing t_{0} and a continuously differentiable function $y: I \rightarrow \mathbb{R}^{n}$ that solves $(*)$.
ii (Uniqueness) Suppose that there are two solutions y, \tilde{y} of $(*)$ defined on intervals I and \tilde{I} respectively. Then y, \tilde{y} agree on the intersection $I \cap \tilde{I}$.

For the following problems, use the definitions:

$$
\begin{array}{r}
k_{1}, k_{2}: \text { principal curvatures } \\
H=k_{1}+k_{2}: \text { mean curvature } \\
K=k_{1} k_{2}: \text { Gauss curvature }
\end{array}
$$

3. Curvatures of some standard surfaces

Compute the curvatures k_{1}, k_{2}, H and K for
(a) a sphere of radius R,
(b) a cylinder of radius R.

4. Curvatures of surfaces of revolution

A surface of revolution in \mathbb{R}^{3} is defined by

$$
M=M_{f}:=\left\{(x, y, z) \in I \times \mathbb{R}^{2} \mid f(x)=\sqrt{y^{2}+z^{2}}\right\} \subset \mathbb{R}^{3}
$$

where $f: I \rightarrow \mathbb{R}$ is a smooth positive function, I an interval. The curve γ given by $y=f(x)$ in the plane \mathbb{R}^{2} is called the generator of M. Find k_{1}, k_{2}, H and K for M.

Hint: You can use without proof (but think about it) that the principal directions of a surface of revolution are in the direction tangent to γ and normal to γ. Useful notation: $r=\sqrt{y^{2}+z^{2}}$ and $r e^{i \theta}=y+i z=(y, z)$.

