Exercise Sheet 2

To be handed in until October 4

1. On curvature and torsion of curves in \mathbb{R}^3

(a) Compute the scalar curvature k and torsion l at t=0 for the curve

$$t \mapsto (t, at^2, bt^3) \quad a, b \in \mathbb{R}.$$

- (b) Show that if a curve γ in \mathbb{R}^3 has identically vanishing scalar torsion then γ lies in a plane.
- (c) Suppose that a curve γ in \mathbb{R}^3 has constant scalar curvature and torsion. Show that γ must be a helix.

2. Curvature and torsion determine a curve in \mathbb{R}^3 up to rigid motion

Prove that any given smooth functions k(s), l(s), with k(s) > 0 determine a curve in \mathbb{R}^3 with curvature k(s) and torsion l(s) (where s is the arclength) that is unique up to rigid motion of space (i.e. a composition of rotations and translations).

Hint: Theorem. (Existence and uniqueness for ODEs)

Let $U \subseteq \mathbb{R} \times \mathbb{R}^n$ be an open set and let $f: U \to \mathbb{R}^n$ be continuous. Moreover, suppose f is locally Lipschitz in the second coordinate i.e. for all $(t_0, y_0) \in U$ there is an open neighbourhood $W \subset U$ of (t_0, y_0) and M > 0 such that $|f(t, y_2) - f(t, y_2)| \leq M|y_2 - y_1|$ for all $(t, y_1), (t, y_2) \in W$.

For any $(t_0, y_0) \in U$ consider the ODE system

$$(*) = \begin{cases} \dot{y}(t) = f(t, y(t)) \\ y(t_0) = x_0. \end{cases}$$

Then

- i (Existence) There exists a small open interval I containing t_0 and a continuously differentiable function $y: I \to \mathbb{R}^n$ that solves (*).
- ii (Uniqueness) Suppose that there are two solutions y, \tilde{y} of (*) defined on intervals I and \tilde{I} respectively. Then y, \tilde{y} agree on the intersection $I \cap \tilde{I}$.

For the following problems, use the definitions:

 k_1, k_2 : principal curvatures

 $H = k_1 + k_2$: mean curvature

 $K = k_1 k_2$: Gauss curvature

3. Curvatures of some standard surfaces

Compute the curvatures k_1 , k_2 , H and K for

- (a) a sphere of radius R,
- (b) a cylinder of radius R.

4. Curvatures of surfaces of revolution

A surface of revolution in \mathbb{R}^3 is defined by

$$M = M_f := \{(x, y, z) \in I \times \mathbb{R}^2 \mid f(x) = \sqrt{y^2 + z^2}\} \subset \mathbb{R}^3,$$

where $f: I \to \mathbb{R}$ is a smooth positive function, I an interval. The curve γ given by y = f(x) in the plane \mathbb{R}^2 is called the *generator* of M. Find k_1 , k_2 , H and K for M.

Hint: You can use without proof (but think about it) that the principal directions of a surface of revolution are in the direction tangent to γ and normal to γ . Useful notation: $r = \sqrt{y^2 + z^2}$ and $re^{i\theta} = y + iz = (y, z)$.