Exercise Sheet 4

To be handed in until October 18

1. Helicoid and catenoid are locally isometric

(a) Find a local isometry

 φ : helicoid \rightarrow catenoid.

- (b) Verify that φ preserves K. What does it do to the principle curvatures and principle directions?
- (c*) Show that there is a continuous family of minimal surfaces deforming the helicoid into the catenoid.

2. More on isometries

A local isometry between surfaces in \mathbb{R}^3 preserves the Gauss curvature K but normally not k_1, k_2, H , or the principal directions of curvature. So the situation in exercise 1 was special in this respect.

- (a) Compute K, k_1, k_2, H of a cone.
- (b) Show that the cone (minus the vertex) is locally isometric to the plane.
- (c) Is there a global isometry between the cone (minus the vertex) and the plane minus a point?

3. The Pseudosphere

The pseudosphere is the surface of revolution for the curve $\gamma:\mathbb{R}\to\mathbb{R}^2$ parametrized by

$$t \mapsto (t - \tanh t, \operatorname{sech} t),$$

where $\tanh t = \frac{\sinh t}{\cosh t}$ and $\operatorname{sech} t = \frac{1}{\cosh t}$. Compute K for the pseudosphere.

4. Shortest path in \mathbb{R}^n

Prove that a straight line in \mathbb{R}^n is the shortest path between two given points.