Exercise Sheet 5

To be handed in until October 25

1. Two Atlases on the Sphere

- (a) Give an atlas of 2n + 2 charts on S^n that are graphs.
- (b) Give an atlas of 2 charts on S^n that are given by stereographic projections.

2. An atlas on the real projective space

Let $\mathbb{RP}^n := \{ \text{lines through the origin in } \mathbb{R}^{n+1} \}$. For $0 \neq x \in \mathbb{R}^{n+1}$, let L = [x] be the line through x and 0.

- (a) Define a suitable topology on \mathbb{RP}^n . (Hint: Define a metric on \mathbb{RP}^n .)
- (b) For any $j \in \{0, \dots n\}$ define

$$\mathbb{R}_j^n := \{ x = (x^0, \dots, x^n) \in \mathbb{R}^{n+1} \mid x^j = 0 \} \cong \mathbb{R}^n, Z_j := \{ L \in \mathbb{RP}^n \mid L \subset \mathbb{R}_j^n \}, U_j := \mathbb{RP}^n \setminus Z_j.$$

Show that $U_j = \{ [x] \in \mathbb{RP}^n \mid x^j \neq 0 \}$ and that U_j is open in \mathbb{RP}^n .

(c) Define homogeneous coordinates on U_j by $\psi_j : U_j \to \mathbb{R}^n$ by¹

$$\psi_j([x]) = \frac{(x^0, \dots, \widehat{x^j}, \dots x^n)}{x^j}$$

Prove that the maps ψ_j are well-defined and that the coordinate systems (U_j, ψ_j) give an atlas on \mathbb{RP}^n .

$$(x^0, \dots, x^j, \dots, x^n) := (x^0, \dots, x^{j-1}, x^{j+1}, \dots, x^n).$$

 $^{^1\}mathrm{The}$ hat is a useful notation that means that this variable is omitted, i.e.

Differential Geometry I	Tom Ilmanen
D-MATH	Fall 2023

3. Two diffeomorphic but not equal structures on the real line

Consider \mathbb{R} with its usual differentiable structure, induced by the chart $\varphi : \mathbb{R} \to \mathbb{R}$, $\varphi(x) = x$. Also consider the differentiable structure induced by the chart $\psi : \mathbb{R} \to \mathbb{R}$, $\psi(x) = x^3$.

Show that the two differentiable structures are not equal, but that nevertheless, the two differentiable manifolds are diffeomorphic.

4. Quaternions

Let Q denote the vector space \mathbb{R}^4 with basis $\{1, i, j, k\}$ and multiplication subject to the laws $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j. (These make Q into an *algebra*.)

(a) Show that every non-zero element $u \in Q$ is invertible.

Hint: Set u = a + bi + cj + dk. It is useful to define the *conjugate* $\bar{u} := a - bi - cj - dk$ and to prove $\bar{u}u = |u|^2 = u\bar{u}$.

- (b) Show that |uv| = |u||v| for $u, v \in Q$.
- (c) Show that $S^3 := \{ u \in Q \mid |u| = 1 \}$ has the structure of a group.

5. For those new to topology

- (a) Prove that the subspace topology is a topology.
- (b) Prove that the quotient topology is a topology.
- (c) Show that the subspace topology for S^1 in \mathbb{R}^2 coincides with the quotient topology $\mathbb{R} \to S^1$.
- (d) Recall that a topological space X is not connected if there are non-empty, open, disjoint subsets $U, V \subset X$ such that $U \cup V = X$. Any U that arises this way (and X itself) is called a component of X. Show that if X is a manifold there is a unique decomposition

$$X = \bigcup_{\alpha} U_{\alpha},$$

where U_{α} are disjoint connected components of X.

(e) What happens if we want to decompose the Cantor set X as in (d)?