Exercise Sheet 7

To be handed in until November 08

1. The Veronese embedding

(a) Consider the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ given by $F(x, y, z):=\left(x^{2}-y^{2}, x y, x z, y z\right)$. Prove that F induces a well-defined map $f: \mathbb{R P}^{2} \rightarrow \mathbb{R}^{4}$ characterized by $f([p]):=F(p)$ for any $p \in S^{2}$.
(b) Prove that f is injective.
(c) Prove that f is an immersion.
(d) Prove that f is a homeomorphism onto its image. (The map f is called the Veronese embedding of $\mathbb{R} \mathbb{P}^{2}$ in \mathbb{R}^{4}. Note that $\mathbb{R P}^{2}$ does not embed in \mathbb{R}^{3}.)

2. $T S^{3}$ has a global trivialization

A Lie group is a smooth manifold endowed with a group structure such that the group operations $(g, h) \mapsto g h$ and $g \mapsto g^{-1}$ are smooth.
(a) Show that $S^{3}:=\{V \in Q:|V|=1\}$ (where Q are the quaternions) is a Lie group.
(b) Construct smooth vector fields X, Y, Z on S^{3} such that $X(u), Y(u), Z(u)$ are independent for each u in S^{3}. Conclude that $T S^{3} \cong S^{3} \times \mathbb{R}^{3}$.

3. The Hopf fibration

(a) Prove that every sphere of odd dimension carries a nowhere vanishing vector field.
(b) Prove that $S^{2 n-1}$ has a "smooth" decomposition into circles. They are called Hopf fibers of $S^{2 n-1}$.
(c*) Can S^{2} be decomposed into a disjoint union of submanifolds diffeomorphic to S^{1} ?

4. Visualization of the Hopf fibration for S^{3}

Identify \mathbb{C}^{2} with the quaternions Q by identifying $(z, w)=(a+b i, c+d i) \in \mathbb{C}^{2}$ with $z+w j=a+b i+c j+d k \in Q$.
(a) Indentify $S^{3} \backslash\{-1\}$ with \mathbb{R}^{3} via stereographic projection from the point $-1 \in Q$. Locate in the target \mathbb{R}^{3} the images of the points $1, \pm i, \pm j, \pm k$ and the 6 "coordinate" great circles of S^{3}.
(b) For $0 \leq r \leq \pi / 2$, define

$$
T_{r}:=\{(z, w):|z|=\cos (r),|w|=\sin (r)\}
$$

(i) Observe that $\left(T_{r}\right)_{0 \leq r \leq \pi / 2}$ is a partition of S^{3}.
(ii) Observe that T_{0} and $T_{\pi / 2}$ are great circles of S^{3} and are Hopf fibers in the sense of exercise 3 .
(iii) Observe that for $0<r<\pi / 2$ the T_{r} are all tori, that they are equidistant from each other (in the path metric on S^{3}) and that each T_{r} is a union of Hopf fibers. The middle torus $T_{\pi / 4}=\{(z, w)| | z \mid=$ $|w|=1 / \sqrt{2})\}$ is called the Clifford torus.
(c) Visualize the Hopf fibration of S^{3} by drawing all of the Hopf fibers in \mathbb{R}^{3} (after stereographic projection). The tori T_{r} are useful guides.
(d) Remarkably, the quotient space S^{3} / \sim is S^{2}, where \sim is the equivalence relation where each Hopf fiber becomes a point. Can you "see" the S^{2} that is swept out as the fiber S^{1} varies in S^{3} ? Can you find the upper and lower hemispheres of the S^{2} in your diagram?

