Exercise Sheet 7

To be handed in until November 08

1. The Veronese embedding

- (a) Consider the map $F : \mathbb{R}^3 \to \mathbb{R}^4$ given by $F(x, y, z) := (x^2 y^2, xy, xz, yz)$. Prove that F induces a well-defined map $f : \mathbb{RP}^2 \to \mathbb{R}^4$ characterized by f([p]) := F(p) for any $p \in S^2$.
- (b) Prove that f is injective.
- (c) Prove that f is an immersion.
- (d) Prove that f is a homeomorphism onto its image. (The map f is called the *Veronese embedding* of \mathbb{RP}^2 in \mathbb{R}^4 . Note that \mathbb{RP}^2 does not embed in \mathbb{R}^3 .)

2. TS^3 has a global trivialization

A Lie group is a smooth manifold endowed with a group structure such that the group operations $(g, h) \mapsto gh$ and $g \mapsto g^{-1}$ are smooth.

- (a) Show that $S^3 := \{V \in Q : |V| = 1\}$ (where Q are the quaternions) is a Lie group.
- (b) Construct smooth vector fields X, Y, Z on S^3 such that X(u), Y(u), Z(u) are independent for each u in S^3 . Conclude that $TS^3 \cong S^3 \times \mathbb{R}^3$.

3. The Hopf fibration

- (a) Prove that every sphere of odd dimension carries a nowhere vanishing vector field.
- (b) Prove that S^{2n-1} has a "smooth" decomposition into circles. They are called *Hopf fibers* of S^{2n-1} .
- (c*) Can S^2 be decomposed into a disjoint union of submanifolds diffeomorphic to S^1 ?

Differential Geometry I	Tom Ilmanen
D-MATH	Fall 2023

4. Visualization of the Hopf fibration for S^3

Identify \mathbb{C}^2 with the quaternions Q by identifying $(z, w) = (a + bi, c + di) \in \mathbb{C}^2$ with $z + wj = a + bi + cj + dk \in Q$.

- (a) Indentify $S^3 \setminus \{-1\}$ with \mathbb{R}^3 via stereographic projection from the point $-1 \in Q$. Locate in the target \mathbb{R}^3 the images of the points $1, \pm i, \pm j, \pm k$ and the 6 "coordinate" great circles of S^3 .
- (b) For $0 \le r \le \pi/2$, define

$$T_r := \{(z, w) : |z| = \cos(r), |w| = \sin(r)\}.$$

- (i) Observe that $(T_r)_{0 \le r \le \pi/2}$ is a partition of S^3 .
- (ii) Observe that T_0 and $T_{\pi/2}$ are great circles of S^3 and are Hopf fibers in the sense of exercise 3.
- (iii) Observe that for $0 < r < \pi/2$ the T_r are all tori, that they are equidistant from each other (in the path metric on S^3) and that each T_r is a union of Hopf fibers. The middle torus $T_{\pi/4} = \{(z, w) | |z| = |w| = 1/\sqrt{2}\}$ is called the *Clifford torus*.
- (c) Visualize the Hopf fibration of S^3 by drawing all of the Hopf fibers in \mathbb{R}^3 (after stereographic projection). The tori T_r are useful guides.
- (d) Remarkably, the quotient space S^3/\sim is S^2 , where \sim is the equivalence relation where each Hopf fiber becomes a point. Can you "see" the S^2 that is swept out as the fiber S^1 varies in S^3 ? Can you find the upper and lower hemispheres of the S^2 in your diagram?