Exercise Sheet 8

To be handed in until November 15

1. Unit quaternions and rotations

Let $Q \cong \mathbb{R}^{4}$ be the quaternions and define the purely imaginary quaternions by

$$
\mathbb{R}^{3}:=\{a i+b j+c k \in Q \mid a, b, c \in \mathbb{R}\} \cong\{0\} \times \mathbb{R}^{3} \subset Q
$$

(a) Verify that the rule

$$
A d_{v}: w \mapsto v w v^{-1}
$$

defines an action of the unit quaternions $v \in S^{3}$ on \mathbb{R}^{3} by linear isometries (with respect to the usual inner product).
Hint: Use that for $u \in Q$ that u is purely imaginary iff $\bar{u}=-u$.
(b) For any quaternion $u \in Q$ define e^{u} by power series. Verify that for $n \in S^{2} \subset \mathbb{R}^{3}$ and $\theta \in \mathbb{R}$ we have

$$
e^{\theta n}=\cos \theta+n \sin \theta
$$

Show that $e^{\theta n} \in S^{3}$. Moreover, show that any v in $S^{3} \subset Q$ can be written as $v=e^{\theta n}$ for some $\theta \in \mathbb{R}$ and $n \in S^{2} \subset \mathbb{R}^{3}$ (i.e. the exponential $\mathbb{R}^{3} \rightarrow S^{3}$ is surjective).
(c) Describe the action of an element v of S^{3} on \mathbb{R}^{3} geometrically.

Hint: $A d_{v}$ is a rotation by some angle ϕ about some axis. Find the axis and the angle.
(d) Verify that the association $v \mapsto A d_{v}$ gives a surjective homomorphism and a two-sheeted covering map from S^{3} to $S O(3)$. Consequently, observe that $S O(3) \cong \mathbb{R} P^{3}$.

2. Orientation and quotients

(a) Let M be a connected, oriented manifold, and suppose G is a group that acts freely and properly discontinuously on M by diffeomorphisms. Prove that M / G is orientable iff all $g \in G$ are orientation preserving.
(b) Show that $\mathbb{R P}^{n}$ is orientable iff n is odd.

3. Verseuchungsprinzip

Let M be a manifold and $U \subset M$ be open. Prove: If U is nonorientable then M is nonorientable.

4. Vector fields on the Klein bottle

Recall that the Klein bottle is $K=\mathbb{R}^{2} / G$ where G is the group generated by the maps

$$
\begin{aligned}
& (x, y) \mapsto(x+1,-y) \\
& (x, y) \mapsto(x, y+1) .
\end{aligned}
$$

How many pointwise linearly independent vector fields can you find on \mathbb{R}^{2} / G ?

5. Orientation with curves

Let M be a smooth manifold.
(a) Let $p, q \in M$ and let $\gamma:[0,1] \rightarrow M$ be a curve connecting p to q. Observe that any chosen orientation O of $T_{\gamma(0)} M$ propagates uniquely along γ to a unique path $O_{\gamma}(t)$ of orientations of $T_{\gamma(t)} M$ that is "continuous" in t (define this) and $O_{\gamma}(0)$.
(b) Let γ be a closed curve in M, i.e. $\gamma(0)=\gamma(1)$. We say that γ is orientation-preserving if $O_{\gamma}(0)$ equals $O_{\gamma}(1)$ (for any choice of $O_{\gamma}(0)$); otherwise we say that γ is orientation-reversing. Show that M is orientable if and only if every closed curve is orientation-preserving.
(c) Conclude that the Möbius strip and the Klein bottle are not orientable.
$\left(\mathbf{d}^{*}\right)$ (For the ones that know cohomology): Define an element $w_{1} \in H^{1}\left(M, \mathbb{Z}_{2}\right)$ that is measuring the obstruction of M being orientable, i.e. $w_{1}=0$ iff M is orientable. This w_{1} is called the first Stiefel-Whitney class.

