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1. Lower bounds on the total absolute curvature

(a) Prove that a closed regular curve γ in R2 has∫
γ

|k| ds ≥ 2π.

(b) Prove that a closed regular curve γ in R3 has∫
γ

|k| ds ≥ π.

(c*) (Fenchel’s Theorem) Any closed regular curve γ in R3 has∫
γ

|k| ds ≥ 2π.

Moreover, there is an equality if and only if γ is a plane convex curve.

(d) Recall (Milnor) that a knotted regular curve in R3 has
∫

γ
|k| ds ≥ 4π.

Prove: This bound is sharp, i.e. this cannot be improved to∫
γ

|k| ds ≥ a

for any a > 4π.

Solution:

(a) We know from the lecture that
∫

γ
kds = 2πn for some n ∈ Z. If |n| ≥ 1 we

get ∫
γ

|k| ds ≥
∣∣∣∣∫

γ

kds

∣∣∣∣ = |2πn| ≥ 2π.

To include the case n = 0 we need another strategy. The unit tangent
vector to a closed curve γ : [c, d] → R2 is a function τ : [c, d] → S1 ⊂ R2

with τ(c) = τ(d).

Claim. The image of τ cannot be contained in an arc in S1 of length
strictly smaller than π (that is, in an open half circle).
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Proof. Suppose the image of τ is contained in an open half circle. Let’s say
(by rotating the plane) that the second coordinate of τ(t) in R2 is > 0 for
all t. Then as τ is the derivative of γ the second coordinate of γ(t) in R2

is strictly increasing in t, so γ(c) = γ(d) is not possible, which contradicts
γ being a closed curve.

By the claim, the image of τ contains an arc of length π because the image
of τ is connected. But since τ is a closed curve in S1 it must have length
of at least 2π. If τ is parametrized by arc length then the total curvature
is exactly the length of the curve τ . So∫

γ

|k| ds =
∫

γ

∣∣∣ τ

ds

∣∣∣ ds = lenghth(τ) ≥ 2π.

(b) Suppose γ : [0, L] → R3 is parametrized by arc length. Let τ(s) = dγ
ds be

the unit tangent vector and κ(s) = dγ
ds the curvature vector. Note that τ is a

function [0, L] → S2, hence a closed curve in S2. Let dS2 : S2 ×S2 → [0, ∞)
be the distance function on S2. It is given by the shortest path on the
sphere between two points, i.e. the length of the shortest path on a great
circle. This is exactly the angle between the two points. Therefore the
formula

cos(dS2(u, v)) = ⟨u, v⟩

holds for all u, v ∈ S2, where ⟨·, ·⟩ is the scalar product in R3.

Claim. For any s ∈ [0, L] there is a t ∈ [0, 1] such that

dS2(τ(s), τ(t)) ≥ π

2 .

Proof. Suppose
dS2(τ(s), τ(t)) <

π

2
for any t ∈ S2. Equivalently, by the formula for the distance above:

⟨τ(s), τ(t)⟩ > 0

for all t ∈ [0, L]. Without loss of generality (by rotating R3), assume
τ(s) = (0, 0, 1) is the north pole in S2 ⊂ R3. Set h : [0, L] → R to be
⟨γ(s), (0, 0, 1)⟩, i.e. the third coordinate of τ(s). The negation of the
condition in the claim would be that the last coordinate of τ(s) is positive
for all s. This cannot be. More explicitly, since γ(0) = γ(L) we have

0 = h(L) − h(0) =
∫ L

0

dh

ds
ds =

∫ L

0

〈
dγ

ds
, (0, 0, 1)

〉
ds > 0

which is a contradiction.
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Let t ∈ [0, L] be such that the claim is satisfied for s = 0. Then∫
γ

|k| ds =
∫ t

0

∣∣∣∣dτ

ds

∣∣∣∣ ds +
∫ L

t

∣∣∣∣dτ

ds

∣∣∣∣ ds ≥ dS2(τ(0), τ(t)) + dS2(τ(t), τ(0)) ≥ π

(c) Fenchel’s original proof (1929): https://link.springer.com/article/
10.1007/BF01454836.
A shorter proof by Horn (1971): https://www.tandfonline.com/doi/
abs/10.1080/00029890.1971.11992766. The main steps in the latter
reference are the following.

(i) The curve τ has image in S2 not contained in any open hemisphere.
It is contained in a closed hemisphere iff γ is a plane curve.

(ii) Any curve of length ≤ 2π in S2 is contained in a closed hemisphere.
Any curve of length < 2π is strictly contained in an open hemisphere.

Proof. (i) The proof is similar to the proof of the claims in parts (a)
and (b). Suppose the image of τ is contained in an open hemisphere.
By rotating R3 we can assume that the last coordinate of τ(s) is
> 0. Then as τ is the derivative of γ the last coordinate of γ(t) in
R3 is strictly increasing in t, so γ(0) = γ(L) is not possible, which
contradicts γ being a closed curve.
If the last coordinate of τ(s) is only ≥ 0 for all s, then it actually
must be = 0 for all s. Because if the last coordinate of τ(s) is > 0 for
some s, there needs to be an s̃ such that the last coordinate of τ(s) is
< 0 to get a closed curve (we need to lose height again). But if the
last coordinate of τ(s) is 0 everywhere the curve stays in the plane
with last coordinate 0.

(ii) Let τ be a closed curve of length < 2π in S2. We can divide the
closed curve into two (not closed) curves (say τ1, τ2) of equal lengths
at two points P and Q. Let N be the midpoint of the arc of the
great circle on which P and Q lie. We show now that the curve τ
lies in the hemisphere with north pole N . Suppose not, i.e. one of
the curves, say τ1, crosses the equator with respect to the north pole
N . Let A be this intersection point. Then the curve τ1 together with
its rotation around the axis going through the N by an angle π is a
closed (piecewise smooth) curve of same length as τ and contains two
antipodal points on the sphere (A and the rotated A). But a curve
going through two antipodal points on a sphere must have length at
least 2π. Note that the original τ has the same length as the curve τ1
together with the rotated τ1.
If τ is a closed curve of length ≤ 2π, we can do the same argument
as above to get that if τ crosses the equator, then τ contains two
antipodal points, so must have length at least 2π, hence the curve is
exactly of length 2π. But then τ needs to be a great circle because
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all other closed curves between two antipodal points have a strictly
larger length than 2π. Note now that a great circle lies obviously in a
closed hemisphere.

The two claims imply the statement: If the length of τ (which is equal to∫
γ

|k|ds) were strictly smaller than 2π then τ would be contained in an
open hemisphere by (ii), which contradicts (i). So

∫
γ

|k|ds ≥ 2π.

If the length of τ is exactly 2π then by (ii) lies in a closed hemisphere and
by (1), γ then is a plane curve.

(d) The trefoil as a curve with self-intersections in R2 has total absolute
curvature

∫
γ

|k| ds = 4π.

If we start with a not embedded version of the trefoil in a plane R2 ⊂ R3 the
trefoil still has total absolute curvature 4π. To make the knot embedded
in R3 we need to separate the 3 intersection points. This can be done
by non-trivially curving one of the two segments that intersect close to
an intersection point into an orthogonal direction to the plane R2. This
creates non-trivial curvature in a new direction, where the curvature in R2

direction stays the same. The total curvature in the new direction can be
made arbitrarily small (but nontrivial) to make space for the other segment
and to get an embedded trefoil.

2. For those new to topology

(a) Let X be a topological space. Show that if X is path-connected, then X
is connected.
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(b) Show that the continuous image of a connected topological space is con-
nected.

(c) Let U ⊆ Rn be open set. Show that if U is connected, then it is path-
connected.

(d) Show that the continuous image of a compact topological space is compact.

(e) Let X be a compact and Hausdorff topological space. Show that a subset
A ⊂ X is compact iff it is closed.

Solution:

(a) Suppose X is not connected. Then there are nonempty disjoint open sets
U, V with U ∪ V = X. Choose x ∈ U , y ∈ V . In case there is a continuous
map γ : [0, 1] → X with γ(0) = x and γ(1) = y. Then γ−1(U) and γ−1(V )
are two nonempty open disjoint sets covering [0, 1]. But this contradicts
[0, 1] being connected.

(b) By changing the target of the function f from Y to f(X), the function
stays continuous. So without loss of generality assume f(X) = Y . Suppose
Y is not connected. Then there are nonempty disjoint open sets U, V in Y
with U ∪ V = Y . But then f−1(U) and f−1(V ) are two nonempty open
disjoint sets covering X. But this contradicts X being connected.

(c) Suppose U is connected, nonempty and open. Choose x ∈ U . Define

V = {y ∈ U | there is a path from x to y in U}.

The set V is open in U : Let y ∈ V . There is an open ball centered at y
contained in U . Then there is also a path from x to all elements in this
ball by using the path from x to y and then going in a straight line to
elements in the ball.
The set V \ U is also open in U : If there is no path from x to an element
y ∈ U there are also no paths from x to elements of any small ball around
y. Hence V and and U \ V are open, disjoint and cover U . As x ∈ V
(hence nonempty) and U connected, U \ V must be empty. This proves
V = U and hence U path-connected.

(d) Let f : X → Y be a continuous function. Suppose U = (Uj)j∈J is an
open cover of a f(X). By definition of the subspace topology of Y there
is for any Ui ⊂ f(X) an open set Ũj ⊂ Y such that Uj = Ũj ∩ f(X). By
continuity of f , every set f−1(Ũj) ⊂ X is open. Moreover, the family(
f−1(Ũj)

)
j∈J

is a cover of X. By compactness of X, there is a finite
subcover f−1(Ũ1), . . . , f−1(Ũm) also covering X. But then also Ũ1, . . . , Ũm

is a finite subcover covering f(X), and so is U1, . . . , Um.
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(e) Suppose A is closed. Let U = (Uj)j∈J be an open cover of A. By definition
of the subspace topology of X there is for any Ui ⊂ A an open set Ũj ⊂ X
such that Uj = Ũj ∩ A. Then the family (Ũj)j∈J ∪ {X \ A} is an open
cover of X. By compactness of X, there is a finite subcover Ũ1, . . . , Ũm

and maybe X \ A. In any case U1, . . . , Um is a finite open subcover of A.
Conversely, let x ∈ X \ A. We want to show that there is an open set U
in X containing x and being disjoint from A. Since X is Hausdorff, for
every y ∈ A there are disjoint open sets Uy and Vy such that x ∈ Uy and
y ∈ Vy. Note that (Vy)y∈A is an open cover of A, so has a finite subcover,
say V1, . . . , Vm. Define U = U1 ∩ · · · ∩ Um. This set is open, contains x
and is disjoint from all the sets V1, . . . , Vm and hence also disjoint from A.
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