Exercise Sheet 10

To be handed in until November 29

1. Optimal embedding of product of spheres

What is the lowest dimension d such that $S^{m} \times S^{n}$ embeds into \mathbb{R}^{d} ?

Solution:

We claim $d=n+m+1$ is optimal. The sphere S^{n} embeds into \mathbb{R}^{n+1} as the unit vectors. So $S^{n} \times S^{m}$ also embeds into $\mathbb{R}^{n+1} \times \mathbb{R}^{m+1} \cong \mathbb{R}^{n+m+2}$. Note that any $(x, y) \in S^{n} \times S^{m}$ has norm $\sqrt{2}$ as $|(x, y)|^{2}=|x|^{2}+|y|^{2}=2$. Hence $S^{n} \times S^{m}$ the map $i: S^{n} \times S^{m} \rightarrow S^{n+m+1} \subset \mathbb{R}^{n+m+2}$ given by

$$
(x, y) \mapsto \frac{(x, y)}{\sqrt{2}}
$$

is an embedding. The north pole N in S^{n+m+1} is not contained in the image $i\left(S^{n} \times S^{m}\right)$ so composing the map i with stereographic projection $S^{n+m+1} \backslash$ $\{N\} \rightarrow \mathbb{R}^{n+m+1}$ produces an embedding

$$
S^{n} \times S^{m} \rightarrow \mathbb{R}^{n+m+1}
$$

By exercise 2 there cannot be an embedding of the compact $(n+m)$-manifold $S^{m} \times S^{n}$ into \mathbb{R}^{n+m}, so we found the optimal dimension where $S^{m} \times S^{n}$ embeds.

2. Compact manifolds need at least one dimension higher to immerse

Prove that a compact n-dimensional manifold cannot be immersed into \mathbb{R}^{n}.

Solution:

Suppose $i: M^{n} \rightarrow \mathbb{R}^{n}$ is an immersion for M compact. Immersion means that $d_{p} i(p): T_{p} M \rightarrow \mathbb{R}^{n}$ is an injective linear map for all $p \in M$. But for linear maps between vector spaces of the same dimension, injectivity, surjectivity and bijectivity are all equivalent. Hence $d_{p} i(p)$ is bijective for all p. But then by the inverse function theorem i is a local diffeomorphism. Local diffeomorphisms have open images: Around any $p \in M$ there is a small neighborhood U where i restricts to a diffeomorphism. So $\left.i\right|_{U}: U \rightarrow i(U)$ is a diffeomorphism with $i(U) \subset \mathbb{R}^{n}$ an open neighbourhood of $i(p) \in \mathbb{R}^{n}$.

So $i(M) \subset \mathbb{R}^{n}$ is open. But as M is compact, also $i(M) \subset \mathbb{R}^{n}$ is compact. But the only open and compact subset of \mathbb{R}^{n} is the empty set which is not possible to be $i(M)$.

3. More about the tangent space

(a) Prove $\pi: T M \rightarrow M$ is a submersion.
(b) Show that $T M$ is always orientable (even if M is not).

Solution:

(a) Let $\psi: U \rightarrow \mathbb{R}^{n}$ be a chart. Then there is a chart $\Psi: T U \rightarrow \psi(U) \times \mathbb{R}^{n}$ of $T M$ such that

$$
\left.\pi\right|_{T U}: T U \rightarrow U
$$

is the projection $\psi(U) \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ to the first coordinate using the coordinate charts Ψ and ψ. More concretely, if $\psi=\left(x^{1}, \ldots, x^{n}\right): U \rightarrow \mathbb{R}^{n}$ is the chart then $\Psi: T U \rightarrow \phi(U) \times \mathbb{R}^{n}$ is given by

$$
\Psi=\left(x^{1}, \ldots, x^{n}, \frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right) .
$$

The projection $\phi(U) \times \mathbb{R}^{n} \rightarrow \phi(U)$ to the first coordinate map is a submersion. Hence also $\left.\pi\right|_{T U}: T U \rightarrow U$ is a submersion. Being a submersion is a local property so also $\pi: T M \rightarrow M$ is a submersion.
(b) Let ψ, Ψ be as in part (a). For another chart $\phi: W \rightarrow \mathbb{R}^{n}$ denote $\Phi: T W \rightarrow \phi(W) \times \mathbb{R}^{n}$ the corresponding chart on $T W$. The transition function $\Psi \circ \Phi^{-1}: \phi(U \cap W) \times \mathbb{R}^{n} \rightarrow \psi(U \cap W) \times \mathbb{R}^{n}$ is given by

$$
\Psi \circ \Phi^{-1}(x, v)=\left(\psi \circ \phi^{-1}(x), D_{x}\left(\psi \circ \phi^{-1}\right)(v)\right)
$$

for $x \in \psi(U \cap W)$ and $v \in \mathbb{R}$. The derivative of this map at some (x, v) in direction $(z, w) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ is given by

$$
\begin{aligned}
D_{(x, v)} & \left(\Psi \circ \Phi^{-1}\right)(z, w)=\left.\frac{d}{d t}\right|_{t=0}\left(\Psi \circ \Phi^{-1}\right)(x+t z, v+t w) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\psi \circ \phi^{-1}(x+t z), D_{x+t z}\left(\psi \circ \phi^{-1}\right)(v+t w)\right) \\
& =\left(D_{x}\left(\psi \circ \phi^{-1}\right)(z), D_{x}^{2}\left(\psi \circ \phi^{-1}\right)(v, z)+D_{x}\left(\psi \circ \phi^{-1}\right)(w)\right) \\
& =\left(\begin{array}{cc}
D_{x}\left(\psi \circ \phi^{-1}\right) & 0 \\
D_{x}^{2}\left(\psi \circ \phi^{-1}\right)(v, \cdot) & D_{x}\left(\psi \circ \phi^{-1}\right)
\end{array}\right)\binom{z}{w} .
\end{aligned}
$$

So the determinant of the transition map is

$$
\begin{aligned}
\operatorname{det} D_{(x, v)}\left(\Psi \circ \Phi^{-1}\right) & =\operatorname{det}\left(\begin{array}{cc}
D_{x}\left(\psi \circ \phi^{-1}\right) & 0 \\
D_{x}^{2}\left(\psi \circ \phi^{-1}\right)(v, \cdot) & D_{x}\left(\psi \circ \phi^{-1}\right)
\end{array}\right) \\
& =\operatorname{det} D_{x}\left(\psi \circ \phi^{-1}\right) \operatorname{det} D_{x}\left(\psi \circ \phi^{-1}\right) \\
& =\left(\operatorname{det} D_{x}\left(\psi \circ \phi^{-1}\right)\right)^{2}>0
\end{aligned}
$$

This proves that there is an atlas on $T M$ such that all transition maps have strictly positive determinants, which implies that $T M$ is orientable.

4. Orthogonal and unitary matrices as submanifolds

(a) Prove that $O(n)$ and $S O(n)$ are compact submanifold of $\mathbb{R}^{n \times n}$. Prove that $O(n)$ has two connected components.
(b) Prove that

$$
\begin{aligned}
U(n) & :=\left\{A \in \mathbb{C}^{n \times n} \mid \overline{A^{T}} A=I\right\}, \\
S U(n) & :=\{A \in U(n) \mid \operatorname{det} U=1\}
\end{aligned}
$$

are both compact submanifolds of $\mathbb{C}^{n \times n} \cong \mathbb{R}^{2 n^{2}}$.
(c) Compute the tangent spaces $T_{I} U(n)$ and $T_{I} S U(n)$ at the identity I.
(d) Are $U(n)$ and $S U(n)$ connected?

Solution:

(a) The map $f: \mathbb{R}^{n \times n} \rightarrow\{$ symmetric matrices $\}$ given by $A \mapsto A^{T} A$ is smooth. Note that the space of symmetric matrices is a vector space. The preimage under f of the identity $\{I\}$ is $O(n)$. As the one-elemented space $\{I\}$ is closed its preimage $O(n)=f^{-1}(\{I\}$ is closed. Moreover, as the pointwise (square of the) norm of a matrix A is $\|A\|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}^{2}$ is n (each column in A is a unit vector) the set $O(n)$ is bounded. Closed and bounded sets of $\mathbb{R}^{n \times n}$ are compact, hence $O(n)$ is compact.
To prove that the identity I is a regular value of f let us compute $D_{A} f$: $\mathbb{R}^{n \times n} \rightarrow\{$ symmetric matrices $\}$. For $W \in \mathbb{R}^{n \times n}$ we have

$$
\begin{aligned}
D_{A} f(W) & =\left.\frac{d}{d t}\right|_{t=0} f(A+t W) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left((A+t W)^{T}(A+t W)\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(A^{T} A+t\left(A^{T} W+W^{T} A\right)+t^{2} W^{T} W\right) \\
& =A^{T} W+W^{T} A
\end{aligned}
$$

We need to show that for any $A \in O(n)=f^{-1}(\{I\})$ that $D_{A} f$ is surjective, i.e. that for any symmetric matrix B there is a matrix W such that $B=A^{T} W+W^{T} A$. This is true for $W=\frac{A B}{2}$ as $A^{T} A=I$ and $B^{T}=B$. This proves that $O(n)=f^{-1}(\{I\})$ is a manifold of dimension

$$
\operatorname{dim}\left(\mathbb{R}^{n \times n}\right)-\operatorname{dim}(\text { symmetric matrices })=n^{2}-\frac{n(n+1)}{2}=\frac{n(n-1)}{2}
$$

Next, let us show that $O(n)$ has two connected components. We almost already proved that in exercise sheet 6 problem 2. Any $A \in S O(n)$ is conjugate to a block diagonal matrix

$$
A=V \operatorname{diag}\left(R_{\theta_{1}}, \ldots, R_{\theta_{n / 2}}\right) V^{-1}
$$

with $\theta_{1}, \ldots, \theta_{n / 2} \in \mathbb{R}, V \in G L(n)$ and where $R_{\theta}=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ a rotation matrix. This is true for n even. We only give the proof for n even because when n is odd there is an extra eigenvalue which is 1 and needs to be added to the diagonal matrix. The following argument is easily adjusted to odd n. One possible path from the identity to A is $[0,1] \rightarrow S O(n)$ given by

$$
t \mapsto V \operatorname{diag}\left(R_{t \theta_{1}}, \ldots, R_{t \theta_{n / 2}}\right) V^{-1}
$$

So $S O(n)$ is connected.
We claim that $O(n)=S O(n) \cup S(S O(n))$ where $S \in O(n)$ is any matrix with $\operatorname{det} S=-1$ (e.g. a reflection). Indeed, for $A \in O(n)$ we have $\operatorname{det} A \in$ $\{ \pm 1\}$. If $\operatorname{det} A=-1$ then $\left.A=S\left(S^{-1}\right) A\right) \in S(S O(n))$. Actually, $O(n)=$ $S O(n) \cup S(S O(n))$ is the decomposition into connected components. The subset $S(S O(n))$ is connected as $S O(n)$ is connected and multiplying by a matrix is continuous. As a manifold $S O(n) \cong S(S O(n))$ (but not as Lie groups because the latter is not even a group). Because the determinant det : $O(n) \rightarrow\{ \pm 1\}$ is continuous, $O(n)$ must have at least two connected components as \pm
(b) The strategy of the proof is similar to (a). The map $f: \mathbb{C}^{n \times n} \rightarrow$ \{hermitian matrices $\}$ given by $A \mapsto \overline{A^{T}} A$ is smooth. Note that the space of hermitian matrices is a real (not a complex!) vector space. The preimage under f of the identity $\{I\}$ is $U(n)$. As the one-elemented space $\{I\}$ is closed its preimage $U(n)=f^{-1}(\{I\})$ is closed. Moreover, as the pointwise (square of the) norm of a matrix A is $\|A\|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|A_{i j}\right|^{2}$ is n (each column in A is a (complex) unit vector) the set $U(n)$ is bounded. Closed and bounded sets of $\mathbb{C}^{n \times n} \cong \mathbb{R}^{2 n^{2}}$ are compact, hence $U(n)$ is compact.
To prove that the identity I is a regular value of f let us compute $D_{A} f$: $\mathbb{C}^{n \times n} \rightarrow\{$ hermitian matrices $\}$. For $W \in \mathbb{C}^{n \times n}$ we have

$$
\begin{aligned}
D_{A} f(W) & =\left.\frac{d}{d t}\right|_{t=0} f(A+t W) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\overline{(A+t W)^{T}}(A+t W)\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\overline{A^{T}} A+t\left(\overline{A^{T}} W+\overline{W^{T}} A\right)+t^{2} \overline{W^{T}} W\right) \\
& =\overline{A^{T}} W+\overline{W^{T}} A .
\end{aligned}
$$

We need to show that for any $A \in U(n)=f^{-1}(\{I\})$ that $D_{A} f$ is surjective, i.e. that for any hermitian matrix B there is a matrix W such that $B=$ $\overline{A^{T}} W+\overline{W^{T}} A$. This is true for $W=\frac{A B}{2}$ as $\overline{A^{T}} A=I$ and $\overline{B^{T}}=B$. This proves that $U(n)=f^{-1}(\{I\})$ is a manifold of dimension

$$
\operatorname{dim}\left(\mathbb{R}^{2 n^{2}}\right)-\operatorname{dim}(\text { hermitian matrices })=2 n^{2}-n^{2}=n^{2}
$$

Let us compute the derivative of det : $\mathbb{C}^{n \times n} \rightarrow \mathbb{C}$ For $A=I$ and $W \in$ $\mathbb{C}^{n \times n}$ we have

$$
\begin{aligned}
D_{I} \operatorname{det}(W) & =\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}(I+t W) \\
& =\lim _{t \rightarrow 0} \frac{\operatorname{det}(I+t W)-\operatorname{det} I}{t} \\
& =\operatorname{tr}(W) .
\end{aligned}
$$

We used that $\operatorname{det}(I+t W)=t^{n} \operatorname{det}(I / t-(-W))=t^{n} \chi_{(-W)}(1 / t)$ and the characteristic polynomial $\chi_{W}(\lambda)=\operatorname{det}(\lambda I-W)$ has as the λ^{n-1} coefficient the trace of $-W$.

Let now A be invertible and X any other matrix. Then taking the derivative of

$$
\operatorname{det} X=\operatorname{det}\left(A A^{-1} X\right)=\operatorname{det} A \operatorname{det}\left(A^{-1} X\right)
$$

with respect to X and evaluate it in direction W at $X=A$ we get

$$
\begin{aligned}
D_{A} \operatorname{det}(W) & =\operatorname{det} A D_{A^{-1} A} \operatorname{det}\left(A^{-1} W\right) \\
& =\operatorname{det} A D_{I} \operatorname{det}\left(A^{-1} W\right) \\
& =\operatorname{det} A \operatorname{tr}\left(A^{-1} W\right)
\end{aligned}
$$

using the chain rule since the derivative of $X \mapsto A^{-1} X$ is given by $W \mapsto$ $A^{-1} W$ at any X.
For $A \in U(n)$ the determinant is a map det : U(n) $\rightarrow S^{1} \subset \mathbb{C}$ with derivative

$$
D_{A} \operatorname{det}: T_{A} U(n)=\left\{W \in \mathbb{C}^{n \times n} \mid \overline{A^{T}} W+\overline{W^{T}} A=0\right\} \rightarrow \mathbb{R}
$$

given by

$$
D_{A} \operatorname{det}(W)=\operatorname{det} A \operatorname{tr}\left(A^{-1} W\right)
$$

The map det : $U(n) \rightarrow S^{1}$ is a submersion: Because the target space is one-dimensional, surjectivity for the differential is equivalent to it being non-zero. Just choose a matrix $W \in T_{A}(U)$ such that $A^{-1} W$ has non-zero trace.
This proves that $S U(n)=\operatorname{det}^{-1}(\{1\})$ is a submanifold of $U(n)$ of dimension $\operatorname{dim} U(n)-\operatorname{dim}\left(S^{1}\right)=n^{2}-1$. Moreover, as $S U(n)=\operatorname{det}^{-1}(\{1\})$ it is a closed subset in $U(n)$ and as $U(n)$ is compact also $S U(n)$ is compact.
(c) The tangent space at $A \in U(n)$ is

$$
T_{A} U(n)=\left\{W \in \mathbb{C}^{n \times n} \mid \overline{A^{T}} W+\overline{W^{T}} A=0\right\}
$$

So the tangent space at the identity is

$$
T_{I} U(n)=\left\{W \in \mathbb{C}^{n \times n} \mid W+\overline{W^{T}}=0\right\}
$$

i.e. the space of skew-hermitian matrices.

The tangent space at $A \in S U(n)$ is

$$
T_{A} S U(n)=\left\{W \in \mathbb{C}^{n \times n} \mid \overline{A^{T}} W+\overline{W^{T}} A=0, \quad \operatorname{det} A \operatorname{tr}\left(A^{-1} W\right)=0\right\}
$$

So the tangent space at the identity is

$$
T_{I} U(n)=\left\{W \in \mathbb{C}^{n \times n} \mid W+\overline{W^{T}}=0, \quad \operatorname{tr}(W)=0\right\}
$$

i.e. the space of trace-zero skew-hermitian matrices.
(d) Let us first show that $U(n)$ is connected. Any unitary matrix $A \in U(n)$ can be diagonalized, i.e. there is an invertible matrix V and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
A=V \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) V^{-1}
$$

Actually, $\lambda_{j}=e^{i \theta_{j}}$ for some $\theta_{j} \in \mathbb{R}$ as eigenvalues need to have norm 1 . But then $[0,1] \rightarrow U(n)$ given by

$$
t \mapsto V \operatorname{diag}\left(e^{i t \theta_{1}}, \ldots, e^{i t \theta_{n}}\right) V^{-1}
$$

is a path in $U(n)$ from the identity to A.
If $A \in S U(n)$ then $\theta_{1}+\cdots+\theta_{n}=0$ as $\operatorname{det} A=1$. So the constructed path above in $U(n)$ is actually for all t in $S U(n)$ if A is.

5. The complex projective space

Let $\mathbb{C P} \mathbb{P}^{n}:=\left\{\right.$ complex lines in \mathbb{C}^{n+1} through the origin $\}$. Define the function $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C P}^{n}$ by

$$
z=\left(z^{0}, \ldots, z^{n}\right) \mapsto[z]=\{\lambda z \mid \lambda \in \mathbb{C}\} \in \mathbb{C} \mathbb{P}^{n}
$$

(a) Find coordinate charts that make $\mathbb{C P}^{n}$ into a smooth $2 n$-manifold.
(b) Observe that $\mathbb{C P}^{1} \cong S^{2}$.
(c) Let $S^{2 n+1}:=\left\{z \in \mathbb{C}^{n+1}| | z \mid=1\right\}$. The map $h: S^{2 n+1} \rightarrow \mathbb{C P}^{n}$ given by $h(z):=[z]$ is called the Hopf fibration. Prove that h is a submersion. The fibers $h^{-1}(q), q \in \mathbb{C P}^{n}$, yield a decomposition of $S^{2 n+1}$ into circles.
(d) Observe that in the case $n=1$ we get the classical Hopf fibration

$$
h: S^{3} \rightarrow S^{2}
$$

as defined in exercise sheet 7 .

Solution:

(a) For $j=0, \ldots, n$ set $U_{j}=\left\{[z] \in \mathbb{C P}^{n} \mid z^{j} \neq 0\right\}$. This is well defined as if $[z]=[w]$ then $z^{j} \neq 0$ iff $w^{j} \neq 0$. Define charts $\psi_{j}: U_{j} \rightarrow \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ given by

$$
[z] \mapsto \frac{\left(z^{0}, \ldots, \widehat{z^{j}}, \ldots, z^{n}\right)}{z^{j}}
$$

This map is well-defined as for $[z]=[w]$ also $\psi_{j}([z])=\psi_{j}([w])$ by the same argument as for the real projective space. The map is bijective with inverse $\psi_{j}^{-1}: \mathbb{C}^{n} \cong \mathbb{R}^{2 n} \rightarrow U_{j}$

$$
y \mapsto\left[\left(y^{0}, \ldots, y^{j-1}, 1, y^{j}, \ldots, y^{n}\right)\right]
$$

We equip $\mathbb{C P}^{n}$ with the quotient topology coming from the map π : $\mathbb{C}^{n+1} \backslash$ $\{0\} \rightarrow \mathbb{C P}^{n}$ sending $z \mapsto[z]$. More concretely, a set $U \subset \mathbb{C P}^{n}$ is open iff the union of the complex lines in U as a subset of $\mathbb{C}^{n+1} \backslash\{0\}$ is open. With this topology on $\mathbb{C P}^{n}$, the map ψ_{j} is a homeomorphism. Indeed, for $U \subset \mathbb{C}^{n}$,
$\pi^{-1}\left(\psi_{j}^{-1}(U)\right)=\left\{\lambda\left(y^{0}, \ldots, y^{j-1}, 1, y^{j}, \ldots, y^{n}\right) \mid \lambda \in \mathbb{C} \backslash\{0\}, y \in U\right\} \subset \mathbb{C}^{n+1} \backslash\{0\}$.
This set is open in $\mathbb{C}^{n+1} \backslash\{0\}$ iff U is open in \mathbb{C}^{n}. That the charts are compatible is proved exactly as for the real projective space (see exercise 2 sheet 5).
(b) $\mathbb{C P}^{1}$ and S^{2} are both the one-point compactification of the complex plane \mathbb{C}. The one-point compactification $\overline{\mathbb{C}}$ of the complex plane is as a set the disjoint union $\mathbb{C} \cup\{\infty\}$. The topology is the following. A subset $U \subset \overline{\mathbb{C}}$ that does not contain ∞ is open iff it is open in \mathbb{C}. A subset U in $\overline{\mathbb{C}}$ that contains ∞ is open iff its complement is compact in \mathbb{C}.
The map $S^{2} \rightarrow \overline{\mathbb{C}}$ defined by stereographic projection on $S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2} \cong$ $\mathbb{C} \subset \overline{\mathbb{C}}$ and sending the north pole $N \mapsto \infty$ is a homeomorphism.
Also the map $\mathbb{C P}^{1} \rightarrow \overline{\mathbb{C}}$ defined by

$$
\left[z^{0}, z^{1}\right] \mapsto \begin{cases}\frac{z^{0}}{z^{1}}, & z^{1} \neq 0 \\ \infty, & z^{1}=0\end{cases}
$$

is a homeomorphism. On $U_{1} \subset \mathbb{C}$ the map is simply the chart and $\mathbb{C P}^{1} \backslash U_{1}$ is simply a point in $\mathbb{C P}^{1}$, the line $\{(\lambda, 0) \mid \lambda \in \mathbb{C}\}$.
To check that the composition $S^{2} \rightarrow \overline{\mathbb{C}} \rightarrow \mathbb{C P}^{1}$ is smooth is a straightforward computation.
(c) For $k=0, \ldots, 2 n+1$ let $\psi_{k}^{ \pm}: U_{j}^{ \pm} \rightarrow \mathbb{R}^{2 n+1}$ be the charts on the sphere $S^{2 n+1}$ defined in exercise 1 sheet 5 . Then $h\left(U_{2 j}^{ \pm}\right) \subset U_{j}$ and $h\left(U_{2 j+1}^{ \pm}\right) \subset$ U_{j} for $j=0, \ldots n$ as either the real or the complex part of a complex number needs to be non-zero for the complex number to be non-zero. The composition

$$
B^{2 n+1} \xrightarrow{\left(\psi_{2 j}^{ \pm}\right)^{-1}} U_{2 j}^{ \pm} \xrightarrow{\pi} U_{j} \xrightarrow{\psi_{j}} \mathbb{C}^{n} \cong \mathbb{R}^{2 n}
$$

is given by

$$
\left(y^{0}, \ldots, y^{2 n}\right) \mapsto \frac{\left(y^{0}, \ldots, \widehat{y^{j}}, \ldots, y^{2 n}\right)}{ \pm \sqrt{1-\left(y^{j}\right)^{2}}+i y^{j}}
$$

where we think of $\left(y_{0}, \ldots, \widehat{y^{j}}, \ldots, y^{2 n}\right) \in \mathbb{R}^{2 n} \cong \mathbb{C}^{n}$ as a tuple of complex numbers such that we can divide by a complex number. Similarly, the composition

$$
B^{2 n+1} \xrightarrow{\left(\psi_{2 j+1}^{ \pm}\right)^{-1}} U_{2 j+1}^{ \pm} \xrightarrow{\pi} U_{j} \xrightarrow{\psi_{j}} \mathbb{C}^{n} \cong \mathbb{R}^{2 n}
$$

is given by

$$
\left(y^{0}, \ldots, y^{2 n}\right) \mapsto \frac{\left(y^{0}, \ldots, \widehat{y^{j}}, \ldots, y^{2 n}\right)}{y^{j}+i \pm \widehat{\sqrt{1-\left(y^{j}\right)^{2}}}}
$$

These maps are smooth, so h is differentiable. Moreover, the map is a submersion. We can already see this when taking the partial derivative of the map $f_{j}: B^{2 n+1} \xrightarrow{\left(\psi_{2 j}^{ \pm}\right)^{-1}} U_{2 j}^{ \pm} \xrightarrow{\pi} U_{j} \xrightarrow{\psi_{j}} \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ with respect to all y_{k} except $k=j$ as we get

$$
\frac{\partial f_{j}}{\partial y^{k}}(y)=\left(0, \ldots, 0, \frac{1}{y^{j}+i \pm \sqrt{1-\left(y^{j}\right)^{2}}}, 0, \ldots 0\right)
$$

Differential Geometry I Tom Ilmanen

D-MATH
Fall 2023
with the non-zero entry at position k.
If $z, w \in h^{-1}(q)$ then $z=\lambda w$ for $\lambda \in \mathbb{C} \backslash\{0\}$. Moreover, λ must have norm 1 as z and w do. So $z=e^{i t} w$. We get Hopf fibers.
(d) We already showed in (c) that we get Hopf fibers.

