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To be handed in until November 29

1. Optimal embedding of product of spheres

What is the lowest dimension d such that Sm × Sn embeds into Rd?

Solution:
We claim d = n + m + 1 is optimal. The sphere Sn embeds into Rn+1 as

the unit vectors. So Sn × Sm also embeds into Rn+1 × Rm+1 ∼= Rn+m+2. Note
that any (x, y) ∈ Sn × Sm has norm

√
2 as |(x, y)|2 = |x|2 + |y|2 = 2. Hence

Sn × Sm the map i : Sn × Sm → Sn+m+1 ⊂ Rn+m+2 given by

(x, y) 7→ (x, y)√
2

is an embedding. The north pole N in Sn+m+1 is not contained in the image
i(Sn × Sm) so composing the map i with stereographic projection Sn+m+1 \
{N} → Rn+m+1 produces an embedding

Sn × Sm → Rn+m+1.

By exercise 2 there cannot be an embedding of the compact (n+m)-manifold
Sm×Sn into Rn+m, so we found the optimal dimension where Sm×Sn embeds.

2. Compact manifolds need at least one dimension higher to immerse

Prove that a compact n-dimensional manifold cannot be immersed into Rn.

Solution:
Suppose i : Mn → Rn is an immersion for M compact. Immersion means

that dpi(p) : TpM → Rn is an injective linear map for all p ∈ M . But for linear
maps between vector spaces of the same dimension, injectivity, surjectivity and
bijectivity are all equivalent. Hence dpi(p) is bijective for all p. But then by
the inverse function theorem i is a local diffeomorphism. Local diffeomorphisms
have open images: Around any p ∈ M there is a small neighborhood U where
i restricts to a diffeomorphism. So i|U : U → i(U) is a diffeomorphism with
i(U) ⊂ Rn an open neighbourhood of i(p) ∈ Rn.

So i(M) ⊂ Rn is open. But as M is compact, also i(M) ⊂ Rn is compact.
But the only open and compact subset of Rn is the empty set which is not
possible to be i(M).

3. More about the tangent space

1



Differential Geometry I
D-MATH

Tom Ilmanen
Fall 2023

(a) Prove π : TM → M is a submersion.

(b) Show that TM is always orientable (even if M is not).

Solution:

(a) Let ψ : U → Rn be a chart. Then there is a chart Ψ : TU → ψ(U) × Rn
of TM such that

π|TU : TU → U

is the projection ψ(U) × Rn → Rn to the first coordinate using the coor-
dinate charts Ψ and ψ. More concretely, if ψ = (x1, . . . , xn) : U → Rn is
the chart then Ψ : TU → ϕ(U) × Rn is given by

Ψ =
(
x1, . . . , xn,

∂

∂x1 , . . . ,
∂

∂xn

)
.

The projection ϕ(U) × Rn → ϕ(U) to the first coordinate map is a sub-
mersion. Hence also π|TU : TU → U is a submersion. Being a submersion
is a local property so also π : TM → M is a submersion.

(b) Let ψ,Ψ be as in part (a). For another chart ϕ : W → Rn denote
Φ : TW → ϕ(W ) × Rn the corresponding chart on TW . The transition
function Ψ ◦ Φ−1 : ϕ(U ∩W ) × Rn → ψ(U ∩W ) × Rn is given by

Ψ ◦ Φ−1(x, v) =
(
ψ ◦ ϕ−1(x), Dx(ψ ◦ ϕ−1)(v)

)
for x ∈ ψ(U ∩W ) and v ∈ R. The derivative of this map at some (x, v) in
direction (z, w) ∈ Rn × Rn is given by

D(x,v)(Ψ ◦ Φ−1)(z, w) = d

dt

∣∣∣
t=0

(Ψ ◦ Φ−1)(x+ tz, v + tw)

= d

dt

∣∣∣
t=0

(
ψ ◦ ϕ−1(x+ tz), Dx+tz(ψ ◦ ϕ−1)(v + tw)

)
=
(
Dx(ψ ◦ ϕ−1)(z), D2

x(ψ ◦ ϕ−1)(v, z) +Dx(ψ ◦ ϕ−1)(w)
)

=
(

Dx(ψ ◦ ϕ−1) 0
D2
x(ψ ◦ ϕ−1)(v, ·) Dx(ψ ◦ ϕ−1)

)(
z
w

)
.

So the determinant of the transition map is

detD(x,v)(Ψ ◦ Φ−1) = det
(

Dx(ψ ◦ ϕ−1) 0
D2
x(ψ ◦ ϕ−1)(v, ·) Dx(ψ ◦ ϕ−1)

)
= detDx(ψ ◦ ϕ−1) detDx(ψ ◦ ϕ−1)

=
(
detDx(ψ ◦ ϕ−1)

)2
> 0.

This proves that there is an atlas on TM such that all transition maps
have strictly positive determinants, which implies that TM is orientable.
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4. Orthogonal and unitary matrices as submanifolds

(a) Prove that O(n) and SO(n) are compact submanifold of Rn×n. Prove
that O(n) has two connected components.

(b) Prove that

U(n) := {A ∈ Cn×n | ATA = I},
SU(n) := {A ∈ U(n) | detU = 1}

are both compact submanifolds of Cn×n ∼= R2n2 .

(c) Compute the tangent spaces TIU(n) and TISU(n) at the identity I.

(d) Are U(n) and SU(n) connected?

Solution:

(a) The map f : Rn×n → {symmetric matrices} given by A 7→ ATA is
smooth. Note that the space of symmetric matrices is a vector space. The
preimage under f of the identity {I} is O(n). As the one-elemented space
{I} is closed its preimage O(n) = f−1({I} is closed. Moreover, as the
pointwise (square of the) norm of a matrix A is ||A||2 =

∑n
i=1
∑n
j=1 A

2
ij

is n (each column in A is a unit vector) the set O(n) is bounded. Closed
and bounded sets of Rn×n are compact, hence O(n) is compact.
To prove that the identity I is a regular value of f let us compute DAf :
Rn×n → {symmetric matrices}. For W ∈ Rn×n we have

DAf(W ) = d

dt

∣∣∣
t=0

f(A+ tW )

= d

dt

∣∣∣
t=0

((A+ tW )T (A+ tW ))

= d

dt

∣∣∣
t=0

(ATA+ t(ATW +WTA) + t2WTW )

= ATW +WTA.

We need to show that for any A ∈ O(n) = f−1({I}) thatDAf is surjective,
i.e. that for any symmetric matrix B there is a matrix W such that
B = ATW + WTA. This is true for W = AB

2 as ATA = I and BT = B.
This proves that O(n) = f−1({I}) is a manifold of dimension

dim(Rn×n) − dim(symmetric matrices) = n2 − n(n+ 1)
2 = n(n− 1)

2 .
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Next, let us show that O(n) has two connected components. We almost
already proved that in exercise sheet 6 problem 2. Any A ∈ SO(n) is
conjugate to a block diagonal matrix

A = V diag(Rθ1 , . . . , Rθn/2)V −1

with θ1, . . . , θn/2 ∈ R, V ∈ GL(n) and where Rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
a rotation matrix. This is true for n even. We only give the proof for
n even because when n is odd there is an extra eigenvalue which is 1
and needs to be added to the diagonal matrix. The following argument
is easily adjusted to odd n. One possible path from the identity to A is
[0, 1] → SO(n) given by

t 7→ V diag(Rtθ1 , . . . , Rtθn/2)V −1.

So SO(n) is connected.
We claim that O(n) = SO(n) ∪ S(SO(n)) where S ∈ O(n) is any matrix
with detS = −1 (e.g. a reflection). Indeed, for A ∈ O(n) we have detA ∈
{±1}. If detA = −1 then A = S(S−1)A) ∈ S(SO(n)). Actually, O(n) =
SO(n) ∪S(SO(n)) is the decomposition into connected components. The
subset S(SO(n)) is connected as SO(n) is connected and multiplying by
a matrix is continuous. As a manifold SO(n) ∼= S(SO(n)) (but not as Lie
groups because the latter is not even a group). Because the determinant
det : O(n) → {±1} is continuous, O(n) must have at least two connected
components as ±

(b) The strategy of the proof is similar to (a). The map f : Cn×n →
{hermitian matrices} given by A 7→ ATA is smooth. Note that the space
of hermitian matrices is a real (not a complex!) vector space. The preim-
age under f of the identity {I} is U(n). As the one-elemented space {I} is
closed its preimage U(n) = f−1({I}) is closed. Moreover, as the pointwise
(square of the) norm of a matrix A is ||A||2 =

∑n
i=1
∑n
j=1 |Aij |2 is n (each

column in A is a (complex) unit vector) the set U(n) is bounded. Closed
and bounded sets of Cn×n ∼= R2n2 are compact, hence U(n) is compact.
To prove that the identity I is a regular value of f let us compute DAf :
Cn×n → {hermitian matrices}. For W ∈ Cn×n we have

DAf(W ) = d

dt

∣∣∣
t=0

f(A+ tW )

= d

dt

∣∣∣
t=0

((A+ tW )T (A+ tW ))

= d

dt

∣∣∣
t=0

(ATA+ t(ATW +WTA) + t2WTW )

= ATW +WTA.
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We need to show that for any A ∈ U(n) = f−1({I}) thatDAf is surjective,
i.e. that for any hermitian matrix B there is a matrix W such that B =
ATW +WTA. This is true for W = AB

2 as ATA = I and BT = B. This
proves that U(n) = f−1({I}) is a manifold of dimension

dim(R2n2
) − dim(hermitian matrices) = 2n2 − n2 = n2.

Let us compute the derivative of det : Cn×n → C For A = I and W ∈
Cn×n we have

DI det(W ) = d

dt

∣∣∣
t=0

det(I + tW )

= lim
t→0

det(I + tW ) − det I
t

= tr(W ).

We used that det(I + tW ) = tn det(I/t− (−W )) = tnχ(−W )(1/t) and the
characteristic polynomial χW (λ) = det(λI−W ) has as the λn−1 coefficient
the trace of −W .
Let now A be invertible and X any other matrix. Then taking the deriva-
tive of

detX = det(AA−1X) = detAdet(A−1X)
with respect to X and evaluate it in direction W at X = A we get

DA det(W ) = detADA−1A det(A−1W )
= detADI det(A−1W )
= detA tr(A−1W )

using the chain rule since the derivative of X 7→ A−1X is given by W 7→
A−1W at any X.
For A ∈ U(n) the determinant is a map det : U(n) → S1 ⊂ C with
derivative

DA det : TAU(n) = {W ∈ Cn×n |ATW +WTA = 0} → R

given by
DA det(W ) = detA tr(A−1W ).

The map det : U(n) → S1 is a submersion: Because the target space is
one-dimensional, surjectivity for the differential is equivalent to it being
non-zero. Just choose a matrix W ∈ TA(U) such that A−1W has non-zero
trace.
This proves that SU(n) = det−1({1}) is a submanifold of U(n) of dimen-
sion dimU(n) − dim(S1) = n2 − 1. Moreover, as SU(n) = det−1({1}) it
is a closed subset in U(n) and as U(n) is compact also SU(n) is compact.
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(c) The tangent space at A ∈ U(n) is

TAU(n) = {W ∈ Cn×n |ATW +WTA = 0}.

So the tangent space at the identity is

TIU(n) = {W ∈ Cn×n |W +WT = 0},

i.e. the space of skew-hermitian matrices.
The tangent space at A ∈ SU(n) is

TASU(n) = {W ∈ Cn×n |ATW +WTA = 0, detA tr(A−1W ) = 0}.

So the tangent space at the identity is

TIU(n) = {W ∈ Cn×n |W +WT = 0, tr(W ) = 0},

i.e. the space of trace-zero skew-hermitian matrices.

(d) Let us first show that U(n) is connected. Any unitary matrix A ∈ U(n)
can be diagonalized, i.e. there is an invertible matrix V and λ1, . . . , λn ∈ C
such that

A = V diag(λ1, . . . , λn)V −1.

Actually, λj = eiθj for some θj ∈ R as eigenvalues need to have norm 1.
But then [0, 1] → U(n) given by

t 7→ V diag(eitθ1 , . . . , eitθn)V −1

is a path in U(n) from the identity to A.
If A ∈ SU(n) then θ1 + · · ·+θn = 0 as detA = 1. So the constructed path
above in U(n) is actually for all t in SU(n) if A is.
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5. The complex projective space

Let CPn := {complex lines in Cn+1 through the origin}. Define the function
π : Cn+1 \ {0} → CPn by

z = (z0, . . . , zn) 7→ [z] = {λz |λ ∈ C} ∈ CPn.

(a) Find coordinate charts that make CPn into a smooth 2n-manifold.

(b) Observe that CP1 ∼= S2.

(c) Let S2n+1 := {z ∈ Cn+1 | |z| = 1}. The map h : S2n+1 → CPn given by
h(z) := [z] is called the Hopf fibration. Prove that h is a submersion. The
fibers h−1(q), q ∈ CPn, yield a decomposition of S2n+1 into circles.

(d) Observe that in the case n = 1 we get the classical Hopf fibration

h : S3 → S2

as defined in exercise sheet 7.

Solution:

(a) For j = 0, . . . , n set Uj = {[z] ∈ CPn | zj ̸= 0}. This is well defined as if
[z] = [w] then zj ̸= 0 iff wj ̸= 0. Define charts ψj : Uj → Cn ∼= R2n given
by

[z] 7→ (z0, . . . , ẑj , . . . , zn)
zj

.

This map is well-defined as for [z] = [w] also ψj([z]) = ψj([w]) by the
same argument as for the real projective space. The map is bijective with
inverse ψ−1

j : Cn ∼= R2n → Uj

y 7→ [(y0, . . . , yj−1, 1, yj , . . . , yn)].

We equip CPn with the quotient topology coming from the map π : Cn+1 \
{0} → CPn sending z 7→ [z]. More concretely, a set U ⊂ CPn is open iff
the union of the complex lines in U as a subset of Cn+1 \ {0} is open.
With this topology on CPn, the map ψj is a homeomorphism. Indeed, for
U ⊂ Cn,

π−1(ψ−1
j (U)) = {λ(y0, . . . , yj−1, 1, yj , . . . , yn) |λ ∈ C\{0}, y ∈ U} ⊂ Cn+1\{0}.

This set is open in Cn+1 \ {0} iff U is open in Cn. That the charts are
compatible is proved exactly as for the real projective space (see exercise
2 sheet 5).
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(b) CP1 and S2 are both the one-point compactification of the complex plane
C. The one-point compactification C of the complex plane is as a set the
disjoint union C ∪ {∞}. The topology is the following. A subset U ⊂ C
that does not contain ∞ is open iff it is open in C. A subset U in C that
contains ∞ is open iff its complement is compact in C.
The map S2 → C defined by stereographic projection on S2 \{N} → R2 ∼=
C ⊂ C and sending the north pole N 7→ ∞ is a homeomorphism.
Also the map CP1 → C defined by

[z0, z1] 7→

{
z0

z1 , z1 ̸= 0,
∞, z1 = 0

is a homeomorphism. On U1 ⊂ C the map is simply the chart and CP1\U1
is simply a point in CP1, the line {(λ, 0) |λ ∈ C}.
To check that the composition S2 → C → CP1 is smooth is a straightfor-
ward computation.

(c) For k = 0, . . . , 2n + 1 let ψ±
k : U±

j → R2n+1 be the charts on the sphere
S2n+1 defined in exercise 1 sheet 5. Then h(U±

2j) ⊂ Uj and h(U±
2j+1) ⊂

Uj for j = 0, . . . n as either the real or the complex part of a complex
number needs to be non-zero for the complex number to be non-zero. The
composition

B2n+1 (ψ±
2j

)−1

−→ U±
2j

π−→ Uj
ψj−→ Cn ∼= R2n

is given by

(y0, . . . , y2n) 7→ (y0, . . . , ŷj , . . . , y2n)
±
√

1 − (yj)2 + iyj
.

where we think of (y0, . . . , ŷj , . . . , y
2n) ∈ R2n ∼= Cn as a tuple of complex

numbers such that we can divide by a complex number. Similarly, the
composition

B2n+1 (ψ±
2j+1)−1

−→ U±
2j+1

π−→ Uj
ψj−→ Cn ∼= R2n

is given by

(y0, . . . , y2n) 7→ (y0, . . . , ŷj , . . . , y2n)
yj + i±

√
1 − (yj)2

.

These maps are smooth, so h is differentiable. Moreover, the map is a
submersion. We can already see this when taking the partial derivative of

the map fj : B2n+1 (ψ±
2j

)−1

−→ U±
2j

π−→ Uj
ψj−→ Cn ∼= R2n with respect to all

yk except k = j as we get

∂fj
∂yk

(y) =
(

0, . . . , 0, 1
yj + i±

√
1 − (yj)2

, 0, . . . 0
)
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with the non-zero entry at position k.
If z, w ∈ h−1(q) then z = λw for λ ∈ C \ {0}. Moreover, λ must have
norm 1 as z and w do. So z = eitw. We get Hopf fibers.

(d) We already showed in (c) that we get Hopf fibers.
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