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1. Some explicit computations of Lie brackets

Given v ∈ R3, define vector fields on R3 by

Tv(x) := v, Rv(x) := v × x, x ∈ R3.

(a) Compute [Tv, Tw], [Tv, Rw], and [Rv, Rw] for v, w ∈ R3.

(b) Write Ri := R ∂

∂xi
. Compute [Ri, Rj ].

Solution:

(a) In the lecture we derived the following formula for the Lie bracket of two
vector fields X, Y in coordinates (x1, . . . , xn):

[X, Y ]j =
n∑

i=1

(
Xi ∂Y j

∂xi
− Y i ∂Xj

∂xi

)
.

As Tv is constant in x we get [Tv, Tw] = 0 for all v, w ∈ R3. Let us compute
the derivative of the function

Rv(x) = v × x =

v2x3 − v3x2

v3x1 − v1x3

v1x2 − v2x1

 =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 x1

x2

x3


in standard coordinates on R3:

DxRv =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 .

So

[Tv, Rw]1 = −v2w3 + v3w2

[Tv, Rw]2 = v1w3 − v3w1

[Tv, Rw]3 = −v1w2 + v2w1.
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Hence [Tv, Rw] = v × w. Also

[Rv, Rw]1 = −(v3x1 − v1x3)w3 + (v1x2 − v2x1)w2 + (w3x1 − w1x3)v3 − (w1x2 − w2x1)v2,

= −((v × x) × w)1 + ((w × x) × v)1

[Rv, Rw]2 = (v2x3 − v3x2)w3 − (v1x2 − v2x1)w1 − (w2x3 − w3x2)v3 + (w1x2 − w2w1)v1,

= −((v × x) × w)2 + ((w × x) × v)2

[Rv, Rw]3 = −(v2x3 − v3x2)w2 + (v3x1 − v1x3)w1 + (w2x3 − w3x2)v2 − (w3x1 − w1x3)v1

= −((v × x) × w)3 + ((w × x) × v)3

Hence

[Rv, Rw](x) = −((v × x) × w) − ((x × w) × v)
= (w × v) × x = Rw×v(x)

where we used the Jacobi identity for the cross product.

(b) As ∂
∂x1 = (1, 0, 0), ∂

∂x2 = (0, 1, 0), ∂
∂x3 = (0, 0, 1) and using (a) we get

[R1, R2](x) = ((0, 1, 0) × (1, 0, 0)) × x = (−1, 0, 0) × x = −R3(x).

Similarly, [R1, R3] = R2 and [R2, R3] = −R1 and [Ri, Ri] = 0.

2. Effect of product on Lie bracket

Let X, Y be differentiable vector fields and f, g differentiable functions on a
manifold M . Prove that

[fX, gY ] = fg[X, Y ] + f(X · g)Y − g(Y · f)X.

Solution:
In a coordinate chart (x1, . . . , xn) we can locally write

[X, Y ] =
n∑

j=1

n∑
i=1

(
Xi ∂Y j

∂xi
− Y i ∂Xj

∂xi

)
∂

∂xj
.
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Hence we get the formula using the Leibniz rule

[fX, gY ] =
n∑

j=1

n∑
i=1

(
fXi ∂(gY j)

∂xi
− gY i ∂(fXj)

∂xi

)
∂

∂xj

=
n∑

j=1

n∑
i=1

(
fgXi ∂Y j

∂xi
+ fXiY j ∂g

∂xi
− fgY i ∂Xj

∂xi
− gXjY i ∂f

∂xi

)
∂

∂xj

= fg

n∑
j=1

n∑
i=1

(
Xi ∂Y j

∂xi
− Y i ∂Xj

∂xi

)
∂

∂xj

+ f

n∑
j=1

Y j
n∑

i=1
Xi ∂g

∂xi

∂

∂xj
− g

n∑
j=1

Xj
n∑

i=1
Y i ∂f

∂xi

∂

∂xj

= fg[X, Y ] + f(X · g)Y − g(Y · f)X.

3. Regularity of solutions

Let X ∈ Ck(TM) and let γ : (−T, T ) → M be a C1 integral curve of X. Show
that γ is Ck+1.

Solution:
The order of differentiability is a local property, hence it is enough to consider

a vector field and a curve in Rn. An integral curve γ for a vector field X satisfies

∂γ

dt
= X ◦ γ.

We will use this equation repeatedly. If γ and X are both C1 also the left hand
side X ◦ γ is C1. By the equality also the right hand side ∂γ

dt is C1. But by the
fundamental theorem of calculus, this means that actually γ is C2.

Iteratively, if γ and X are Cl then γ is Cl+1. So if X is Ck we can get up
to γ being Ck+1.

4. Closed sets can be obtained as the zero set of a smooth function
and can be approximated from outside by regular open sets

(a) Show any closed set A ⊂ Rn is the zero set of some smooth function

f : Rn → R.

(b) Let A ⊂ Rn be closed. Show there exist open sets U1 ⊃ U2 ⊃ U3 ⊃ . . .
such that ∂Uj is a smooth (n − 1)-manifold and

A =
∞⋂

j=1
Uj .
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Solution:

(a) Any open set U ⊂ Rn can be written as the union of countably many open
balls in the following way: Take all balls in U that have rational midpoint
and rational radius and are contained in U . As we only have countably
many midpoints and countably many radii we get a countable set of balls.
So any closed set A ⊂ Rn can be written as the complement countably
many open balls in Rn. So write A = Rn \

⋃∞
j=1 Brj (xj) for open balls

Brj
(xj) ⊂ Rn \ A with rational midpoints and rational radii. Let ϕj ∈

C∞(Rn) be bump functions supported in Brj
(xj) which are equal to 1 on

Brj/2(xj).
Define

f(x) =
∞∑

j=1
cjϕj(x)

for some real numbers cj > 0 to be chosen after to make sure that the
function is well-defined and smooth. By definition f(x) = 0 iff x ∈ A. Let
the cj > 0 be small enough that

cj ||ϕ(k)
j ||∞ < 2−j

for all 0 ≤ k ≤ j where ||g||∞ = supx∈Rn |g(x)| of a function g : Rn → R
denotes the sup-norm.
With these bounds on the cj the sum that defines f(x) converges abso-
lutely as well as all derivatives:

∞∑
j=1

∣∣∣cjϕ
(k)
j (x)

∣∣∣ =
k∑

j=1

∣∣∣cjϕ
(k)
j (x)

∣∣∣ +
∞∑

j=k+1

∣∣∣cjϕ
(k)
j (x)

∣∣∣
=

k∑
j=1

cj ||ϕ(k)
j || +

∞∑
j=k+1

2−j < ∞

for every k = 0, 1, . . .. Hence the formula for f defines a smooth function
with zero set equal to A.

(b) Let f : Rn → R be a non-negative smooth function with zero set A as
constructed in part (a). Let C ⊂ Rn be the set of critical points of f . By
Sard’s theorem we have that the Lebesgue measure of the critical values
f(X) ⊂ R is zero. In particular, there is a monotone decreasing sequence
(xj)j∈N in R \ f(X) with xj > 0 and lim xj = 0. Define

Uj = f−1((−∞, xj)).

These sets are open in Rn because f is continuous. Because the numbers
xj are monotone decreasing sequence converging to 0, the sets Uj satisfy
by construction

U1 ⊃ U2 ⊃ U3 ⊃ · · · ⊃ A
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with A =
⋂∞

j=1 Uj . Moreover, as the xj are regular points of f the preim-
ages f−1({xj}) are (n − 1)-dimensional submanifolds of Rn. Note that
f−1({xj}) is exactly the boundary of the n-manifold Uj .

5. Covering groups

(a) Let G be a Lie group and K a discrete normal subgroup. The group
homomorphism

G → G/K

is a covering map. We call it a covering homomorphism and G a covering
group of G/K. For an example see exercise 1 sheet 8.
Hint: Find an open neighborhood of the identity e ∈ U such that U · U−1 ∩ K = {e}.

(b) A discrete normal subgroup K of a connected Lie group G lies in the
center of G.
Hint: For k ∈ K consider the map g 7→ gkg−1.

(c) Find a covering homomorphism

S3 × S3 → SO(4)

of degree 2. Since S3×S3 is simply-connected this shows that the universal
covering group of SO(4) is S3 × S3.

Solution:

(a) To prove that the quotient map π : G → G/K is a covering map, we
need to find for each g ∈ G an open set Ug such that {kUg}k∈K is a
disjoint family of open sets. Because then π|Ug

: Ug → K · Ug ⊂ G/K is a
homeomorphism and can be used to turn G/K into a manifold. Equipped
with this structure π|Ug is a diffeomorphism. Moreover, π−1(K · Ug) ∼=
K × Ug, so π is a covering map with fiber K.
So let us prove that for every g ∈ G there is an open set Ug such that
{kUg}k∈K is a disjoint family of open sets. Since K ⊂ G is discrete there
is a neighborhood W of the identity e ∈ G such that K ∩W = {e}. By the
continuity of multiplication, there is an open neighborhood V ⊂ G of the
identity such that V × V ⊂ W . Set U := V ∩ V −1. This is an open set as
an intersection of two open sets, it contains the identity and U · U ⊂ W .
Moreover, U−1 = U because if u ∈ U then u is in V and u−1 ∈ V hence
also u−1 ∈ U . So in particular, U × U−1 ⊂ W . Hence U · U−1 ∩ K = {e}.
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For g ∈ G define Ug := gU . Then the sets {kUg}k∈K are pairwise disjoint:
Suppose that there are k, k′ ∈ K such that k′Ug ∩ kUg = k′gU ∩ kgU ̸= ∅.
Then there are u, u′ ∈ U such that kgu = k′gu′. Then

u′u−1 = g−1k−1k′g ∈ U · U−1 ∩ K = {e}

as the subgroup K is normal. Hence u′ = u and k′ = k. This proves that
the sets {kUg}k∈K are pairwise disjoint.

(b) The center of a group G is defined as the elements that commute with all
other elements: Z(G) := {g ∈ G | gh = hg for all h ∈ G}.
Suppose K is a discrete normal subgroup of a connected Lie group G. Let
k ∈ K. We would like to show that k ∈ Z(G). Define a map cg : G → G
by g 7→ gkg−1. The map is continuous and as G is connected, so is the
image. On the other hand, the image is also contained in K as K is
normal. But a connected subgroup of a discrete group contains only one
element. As k is in the image of cg (for g = e, the identity), the image is
cg(G) = {k}. Hence gkg−1 = k for all g ∈ G which proves that k is in the
center of G.

(c) Let S3 be the group of unit quaternions. Then S3 × S3 acts on R4 by

(u, v) · x = uxv−1.

This action defines a linear map on A(u,v) : R4 → R4 for each pair (u, v) ∈
S3 × S3. Moreover, as u, v are of norm 1, the map A(u,v) preserves the
norm. Hence the map A : S3 × S3 → O(4) sending (u, v) 7→ A(u,v)
is a well-defined smooth group homomorphism. The kernel of the map
is {±(1, 1)} ⊂ S3 × S3. So the image is also a manifold of dimension
6 like S3 × S3. Because S3 is connected and A(e,e) = id ∈ SO(4) the
image is actually in SO(4) ⊂ O(4). The image of A would be a compact
submanifold of the connected compact manifold SO(4). But the image of
A and SO(4) are both of dimension 6 so the image of A is equal to SO(4).
The last argument is proved the same way as exercise 2 sheet 10. An
embedding of a compact manifold is a closed and an open map, hence has
a connected image.
This proves that S3 ×S3 → SO(4) is a two-sheeted covering map. S3 ×S3

is the universal cover of SO(4) because S3 × S3 is simply-connected.
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