Exercise Sheet 11

To be handed in until December 06

1. Some explicit computations of Lie brackets

Given $v \in \mathbb{R}^{3}$, define vector fields on \mathbb{R}^{3} by

$$
T_{v}(x):=v, \quad R_{v}(x):=v \times x, \quad x \in \mathbb{R}^{3} .
$$

(a) Compute $\left[T_{v}, T_{w}\right],\left[T_{v}, R_{w}\right]$, and $\left[R_{v}, R_{w}\right]$ for $v, w \in \mathbb{R}^{3}$.
(b) Write $R_{i}:=R_{\frac{\partial}{\partial x^{i}}}$. Compute $\left[R_{i}, R_{j}\right]$.

Solution:

(a) In the lecture we derived the following formula for the Lie bracket of two vector fields X, Y in coordinates $\left(x^{1}, \ldots, x^{n}\right)$:

$$
[X, Y]^{j}=\sum_{i=1}^{n}\left(X^{i} \frac{\partial Y^{j}}{\partial x^{i}}-Y^{i} \frac{\partial X^{j}}{\partial x^{i}}\right)
$$

As T_{v} is constant in x we get $\left[T_{v}, T_{w}\right]=0$ for all $v, w \in \mathbb{R}^{3}$. Let us compute the derivative of the function

$$
R_{v}(x)=v \times x=\left(\begin{array}{c}
v^{2} x^{3}-v^{3} x^{2} \\
v^{3} x^{1}-v^{1} x^{3} \\
v^{1} x^{2}-v^{2} x^{1}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -v^{3} & v^{2} \\
v^{3} & 0 & -v^{1} \\
-v^{2} & v^{1} & 0
\end{array}\right)\left(\begin{array}{l}
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right)
$$

in standard coordinates on \mathbb{R}^{3} :

$$
D_{x} R_{v}=\left(\begin{array}{ccc}
0 & -v^{3} & v^{2} \\
v^{3} & 0 & -v^{1} \\
-v^{2} & v^{1} & 0
\end{array}\right)
$$

So

$$
\begin{aligned}
& {\left[T_{v}, R_{w}\right]^{1}=-v^{2} w^{3}+v^{3} w^{2}} \\
& {\left[T_{v}, R_{w}\right]^{2}=v^{1} w^{3}-v^{3} w^{1}} \\
& {\left[T_{v}, R_{w}\right]^{3}=-v^{1} w^{2}+v^{2} w^{1}}
\end{aligned}
$$

Hence $\left[T_{v}, R_{w}\right]=v \times w$. Also

$$
\begin{aligned}
{\left[R_{v}, R_{w}\right]^{1} } & =-\left(v^{3} x^{1}-v^{1} x^{3}\right) w^{3}+\left(v^{1} x^{2}-v^{2} x^{1}\right) w^{2}+\left(w^{3} x^{1}-w^{1} x^{3}\right) v^{3}-\left(w^{1} x^{2}-w^{2} x^{1}\right) v^{2} \\
& =-((v \times x) \times w)^{1}+((w \times x) \times v)^{1} \\
{\left[R_{v}, R_{w}\right]^{2} } & =\left(v^{2} x^{3}-v^{3} x^{2}\right) w^{3}-\left(v^{1} x^{2}-v^{2} x^{1}\right) w^{1}-\left(w^{2} x^{3}-w^{3} x^{2}\right) v^{3}+\left(w^{1} x^{2}-w^{2} w^{1}\right) v^{1} \\
& =-((v \times x) \times w)^{2}+((w \times x) \times v)^{2} \\
{\left[R_{v}, R_{w}\right]^{3} } & =-\left(v^{2} x^{3}-v^{3} x^{2}\right) w^{2}+\left(v^{3} x^{1}-v^{1} x^{3}\right) w^{1}+\left(w^{2} x^{3}-w^{3} x^{2}\right) v^{2}-\left(w^{3} x^{1}-w^{1} x^{3}\right) v^{1} \\
& =-((v \times x) \times w)^{3}+((w \times x) \times v)^{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{\left[R_{v}, R_{w}\right](x) } & =-((v \times x) \times w)-((x \times w) \times v) \\
& =(w \times v) \times x=R_{w \times v}(x)
\end{aligned}
$$

where we used the Jacobi identity for the cross product.
(b) As $\frac{\partial}{\partial x^{1}}=(1,0,0), \frac{\partial}{\partial x^{2}}=(0,1,0), \frac{\partial}{\partial x^{3}}=(0,0,1)$ and using (a) we get

$$
\left[R_{1}, R_{2}\right](x)=((0,1,0) \times(1,0,0)) \times x=(-1,0,0) \times x=-R_{3}(x)
$$

Similarly, $\left[R_{1}, R_{3}\right]=R_{2}$ and $\left[R_{2}, R_{3}\right]=-R_{1}$ and $\left[R_{i}, R_{i}\right]=0$.

2. Effect of product on Lie bracket

Let X, Y be differentiable vector fields and f, g differentiable functions on a manifold M. Prove that

$$
[f X, g Y]=f g[X, Y]+f(X \cdot g) Y-g(Y \cdot f) X
$$

Solution:

In a coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ we can locally write

$$
[X, Y]=\sum_{j=1}^{n} \sum_{i=1}^{n}\left(X^{i} \frac{\partial Y^{j}}{\partial x^{i}}-Y^{i} \frac{\partial X^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}} .
$$

Hence we get the formula using the Leibniz rule

$$
\begin{aligned}
{[f X, g Y]=} & \sum_{j=1}^{n} \sum_{i=1}^{n}\left(f X^{i} \frac{\partial\left(g Y^{j}\right)}{\partial x^{i}}-g Y^{i} \frac{\partial\left(f X^{j}\right)}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}} \\
= & \sum_{j=1}^{n} \sum_{i=1}^{n}\left(f g X^{i} \frac{\partial Y^{j}}{\partial x^{i}}+f X^{i} Y^{j} \frac{\partial g}{\partial x^{i}}-f g Y^{i} \frac{\partial X^{j}}{\partial x^{i}}-g X^{j} Y^{i} \frac{\partial f}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}} \\
= & f g \sum_{j=1}^{n} \sum_{i=1}^{n}\left(X^{i} \frac{\partial Y^{j}}{\partial x^{i}}-Y^{i} \frac{\partial X^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}} \\
& \quad+f \sum_{j=1}^{n} Y^{j} \sum_{i=1}^{n} X^{i} \frac{\partial g}{\partial x^{i}} \frac{\partial}{\partial x^{j}}-g \sum_{j=1}^{n} X^{j} \sum_{i=1}^{n} Y^{i} \frac{\partial f}{\partial x^{i}} \frac{\partial}{\partial x^{j}} \\
= & f g[X, Y]+f(X \cdot g) Y-g(Y \cdot f) X .
\end{aligned}
$$

3. Regularity of solutions

Let $X \in C^{k}(T M)$ and let $\gamma:(-T, T) \rightarrow M$ be a C^{1} integral curve of X. Show that γ is C^{k+1}.

Solution:

The order of differentiability is a local property, hence it is enough to consider a vector field and a curve in \mathbb{R}^{n}. An integral curve γ for a vector field X satisfies

$$
\frac{\partial \gamma}{d t}=X \circ \gamma
$$

We will use this equation repeatedly. If γ and X are both C^{1} also the left hand side $X \circ \gamma$ is C^{1}. By the equality also the right hand side $\frac{\partial \gamma}{d t}$ is C^{1}. But by the fundamental theorem of calculus, this means that actually γ is C^{2}.

Iteratively, if γ and X are C^{l} then γ is C^{l+1}. So if X is C^{k} we can get up to γ being C^{k+1}.

4. Closed sets can be obtained as the zero set of a smooth function and can be approximated from outside by regular open sets

(a) Show any closed set $A \subset \mathbb{R}^{n}$ is the zero set of some smooth function

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

(b) Let $A \subset \mathbb{R}^{n}$ be closed. Show there exist open sets $U_{1} \supset U_{2} \supset U_{3} \supset \ldots$ such that ∂U_{j} is a smooth $(n-1)$-manifold and

$$
A=\bigcap_{j=1}^{\infty} U_{j}
$$

Solution:

(a) Any open set $U \subset \mathbb{R}^{n}$ can be written as the union of countably many open balls in the following way: Take all balls in U that have rational midpoint and rational radius and are contained in U. As we only have countably many midpoints and countably many radii we get a countable set of balls. So any closed set $A \subset \mathbb{R}^{n}$ can be written as the complement countably many open balls in \mathbb{R}^{n}. So write $A=\mathbb{R}^{n} \backslash \bigcup_{j=1}^{\infty} B_{r_{j}}\left(x_{j}\right)$ for open balls $B_{r_{j}}\left(x_{j}\right) \subset \mathbb{R}^{n} \backslash A$ with rational midpoints and rational radii. Let $\phi_{j} \in$ $C^{\infty}\left(\mathbb{R}^{n}\right)$ be bump functions supported in $B_{r_{j}}\left(x_{j}\right)$ which are equal to 1 on $B_{r_{j} / 2}\left(x_{j}\right)$.
Define

$$
f(x)=\sum_{j=1}^{\infty} c_{j} \phi_{j}(x)
$$

for some real numbers $c_{j}>0$ to be chosen after to make sure that the function is well-defined and smooth. By definition $f(x)=0$ iff $x \in A$. Let the $c_{j}>0$ be small enough that

$$
c_{j}\left\|\phi_{j}^{(k)}\right\|_{\infty}<2^{-j}
$$

for all $0 \leq k \leq j$ where $\|g\|_{\infty}=\sup _{x \in \mathbb{R}^{n}}|g(x)|$ of a function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ denotes the sup-norm.
With these bounds on the c_{j} the sum that defines $f(x)$ converges absolutely as well as all derivatives:

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left|c_{j} \phi_{j}^{(k)}(x)\right| & =\sum_{j=1}^{k}\left|c_{j} \phi_{j}^{(k)}(x)\right|+\sum_{j=k+1}^{\infty}\left|c_{j} \phi_{j}^{(k)}(x)\right| \\
& =\sum_{j=1}^{k} c_{j}\left\|\phi_{j}^{(k)}\right\|+\sum_{j=k+1}^{\infty} 2^{-j}<\infty
\end{aligned}
$$

for every $k=0,1, \ldots$. Hence the formula for f defines a smooth function with zero set equal to A.
(b) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a non-negative smooth function with zero set A as constructed in part (a). Let $C \subset \mathbb{R}^{n}$ be the set of critical points of f. By Sard's theorem we have that the Lebesgue measure of the critical values $f(X) \subset \mathbb{R}$ is zero. In particular, there is a monotone decreasing sequence $\left(x_{j}\right)_{j \in \mathbb{N}}$ in $\mathbb{R} \backslash f(X)$ with $x_{j}>0$ and $\lim x_{j}=0$. Define

$$
U_{j}=f^{-1}\left(\left(-\infty, x_{j}\right)\right)
$$

These sets are open in \mathbb{R}^{n} because f is continuous. Because the numbers x_{j} are monotone decreasing sequence converging to 0 , the sets U_{j} satisfy by construction

$$
U_{1} \supset U_{2} \supset U_{3} \supset \cdots \supset A
$$

with $A=\bigcap_{j=1}^{\infty} U_{j}$. Moreover, as the x_{j} are regular points of f the preimages $f^{-1}\left(\left\{x_{j}\right\}\right)$ are $(n-1)$-dimensional submanifolds of \mathbb{R}^{n}. Note that $f^{-1}\left(\left\{x_{j}\right\}\right)$ is exactly the boundary of the n-manifold U_{j}.

5. Covering groups

(a) Let G be a Lie group and K a discrete normal subgroup. The group homomorphism

$$
G \rightarrow G / K
$$

is a covering map. We call it a covering homomorphism and G a covering group of G / K. For an example see exercise 1 sheet 8 .
Hint: Find an open neighborhood of the identity $e \in U$ such that $U \cdot U^{-1} \cap K=\{e\}$.
(b) A discrete normal subgroup K of a connected Lie group G lies in the center of G.

Hint: For $k \in K$ consider the map $g \mapsto g k g^{-1}$.
(c) Find a covering homomorphism

$$
S^{3} \times S^{3} \rightarrow S O(4)
$$

of degree 2. Since $S^{3} \times S^{3}$ is simply-connected this shows that the universal covering group of $S O(4)$ is $S^{3} \times S^{3}$.

Solution:

(a) To prove that the quotient map $\pi: G \rightarrow G / K$ is a covering map, we need to find for each $g \in G$ an open set U_{g} such that $\left\{k U_{g}\right\}_{k \in K}$ is a disjoint family of open sets. Because then $\left.\pi\right|_{U_{g}}: U_{g} \rightarrow K \cdot U_{g} \subset G / K$ is a homeomorphism and can be used to turn G / K into a manifold. Equipped with this structure $\left.\pi\right|_{U_{g}}$ is a diffeomorphism. Moreover, $\pi^{-1}\left(K \cdot U_{g}\right) \cong$ $K \times U_{g}$, so π is a covering map with fiber K.
So let us prove that for every $g \in G$ there is an open set U_{g} such that $\left\{k U_{g}\right\}_{k \in K}$ is a disjoint family of open sets. Since $K \subset G$ is discrete there is a neighborhood W of the identity $e \in G$ such that $K \cap W=\{e\}$. By the continuity of multiplication, there is an open neighborhood $V \subset G$ of the identity such that $V \times V \subset W$. Set $U:=V \cap V^{-1}$. This is an open set as an intersection of two open sets, it contains the identity and $U \cdot U \subset W$. Moreover, $U^{-1}=U$ because if $u \in U$ then u is in V and $u^{-1} \in V$ hence also $u^{-1} \in U$. So in particular, $U \times U^{-1} \subset W$. Hence $U \cdot U^{-1} \cap K=\{e\}$.

For $g \in G$ define $U_{g}:=g U$. Then the sets $\left\{k U_{g}\right\}_{k \in K}$ are pairwise disjoint: Suppose that there are $k, k^{\prime} \in K$ such that $k^{\prime} U_{g} \cap k U_{g}=k^{\prime} g U \cap k g U \neq \emptyset$. Then there are $u, u^{\prime} \in U$ such that $k g u=k^{\prime} g u^{\prime}$. Then

$$
u^{\prime} u^{-1}=g^{-1} k^{-1} k^{\prime} g \in U \cdot U^{-1} \cap K=\{e\}
$$

as the subgroup K is normal. Hence $u^{\prime}=u$ and $k^{\prime}=k$. This proves that the sets $\left\{k U_{g}\right\}_{k \in K}$ are pairwise disjoint.
(b) The center of a group G is defined as the elements that commute with all other elements: $Z(G):=\{g \in G \mid g h=h g$ for all $h \in G\}$.
Suppose K is a discrete normal subgroup of a connected Lie group G. Let $k \in K$. We would like to show that $k \in Z(G)$. Define a map $c_{g}: G \rightarrow G$ by $g \mapsto g k g^{-1}$. The map is continuous and as G is connected, so is the image. On the other hand, the image is also contained in K as K is normal. But a connected subgroup of a discrete group contains only one element. As k is in the image of c_{g} (for $g=e$, the identity), the image is $c_{g}(G)=\{k\}$. Hence $g k g^{-1}=k$ for all $g \in G$ which proves that k is in the center of G.
(c) Let S^{3} be the group of unit quaternions. Then $S^{3} \times S^{3}$ acts on \mathbb{R}^{4} by

$$
(u, v) \cdot x=u x v^{-1}
$$

This action defines a linear map on $A_{(u, v)}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ for each pair $(u, v) \in$ $S^{3} \times S^{3}$. Moreover, as u, v are of norm 1, the map $A_{(u, v)}$ preserves the norm. Hence the map $A: S^{3} \times S^{3} \rightarrow O(4)$ sending $(u, v) \mapsto A_{(u, v)}$ is a well-defined smooth group homomorphism. The kernel of the map is $\{ \pm(1,1)\} \subset S^{3} \times S^{3}$. So the image is also a manifold of dimension 6 like $S^{3} \times S^{3}$. Because S^{3} is connected and $A_{(e, e)}=i d \in S O(4)$ the image is actually in $S O(4) \subset O(4)$. The image of A would be a compact submanifold of the connected compact manifold $S O(4)$. But the image of A and $S O(4)$ are both of dimension 6 so the image of A is equal to $S O(4)$. The last argument is proved the same way as exercise 2 sheet 10 . An embedding of a compact manifold is a closed and an open map, hence has a connected image.
This proves that $S^{3} \times S^{3} \rightarrow S O(4)$ is a two-sheeted covering map. $S^{3} \times S^{3}$ is the universal cover of $S O(4)$ because $S^{3} \times S^{3}$ is simply-connected.

