Exercise Sheet 13

To be handed in until December 20

1. Pushforward and pullback of vector fields

Let $\phi: M \rightarrow N$ be smooth, X a smooth vector field on M and Y a smooth vector field on N.

Define the pushforward of X by ϕ via

$$
\phi_{*}(X)(q):=D_{\phi^{-1}(q)} \phi\left(X\left(\phi^{-1}(q)\right)\right) .
$$

Define the pullback of Y by ϕ via

$$
\phi^{*}(Y)(p):=\left(D_{p} \phi\right)^{-1}(Y(\phi(p)))
$$

(a) Show that if ϕ is bijective, $\phi_{*}(X)$ is defined.
(b) Show that if ϕ is a diffeomorphism, $\phi_{*}(X) \in C^{\infty}(T N)$.
(c) Give an example where ϕ is bijective but $\phi_{*}(X)$ not smooth.
(d) Show that if ϕ is a local diffeomorphism, $\phi^{*}(Y)$ is defined and is in $C^{\infty}(T M)$.
(e) Suppose $\phi: M \rightarrow N$ and $\psi: N \rightarrow P$ are diffeomorphisms. Show

$$
\begin{aligned}
\phi^{*} \psi^{*} & =(\psi \circ \phi)^{*}, \quad \psi_{*} \phi_{*}=(\psi \circ \phi)_{*} \\
\phi^{*} \phi_{*} & =i d_{C^{\infty}(T M)}, \quad\left(\phi^{-1}\right)^{*}=\phi_{*}
\end{aligned}
$$

Solution:

(a) By definition.
(b) $\phi_{*}(X)$ is the composition of the smooth maps

$$
N \xrightarrow{\phi^{-1}} M \xrightarrow{X} T M \xrightarrow{D \phi} T N .
$$

(c) Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be given by $x \mapsto x^{3}$. This map is bijective but its inverse $\phi^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\phi^{-1}(x)= \begin{cases}\sqrt[3]{x}, & x \geq 0 \\ -\sqrt[3]{-x}, & x<0\end{cases}
$$

is not smooth at 0 . The pushforward of the vector field $X(y)=1$ is

$$
\phi_{*}(X)(x)=D_{\phi^{-1}(x)} \phi\left(X\left(\phi^{-1}(x)\right)\right)=\phi^{\prime}\left(\phi^{-1}(x)\right)= \begin{cases}3 \sqrt[3]{x^{2}}, & x \geq 0 \\ 3 \sqrt[3]{-x^{2}}, & x<0\end{cases}
$$

which is not smooth at $x=0$.
(d) The definition is well-defined because $d \phi_{p}$ is invertible if ϕ is a local diffeomorphism. Moreover, the pushforward is smooth if Y is smooth as the composition of the smooth maps

$$
M \xrightarrow{\phi} N \xrightarrow{Y} T N \xrightarrow{D \phi^{-1}} T M .
$$

(e) Let Z be a vector field on P and $p \in M$. Then the double pullback is

$$
\begin{aligned}
\phi^{*} \psi^{*}(Z)(p) & =\left(D_{p} \phi\right)^{-1} \psi^{*}(Z)(\phi(p)) \\
& =\left(D_{p} \phi\right)^{-1}\left(D_{\phi(p)} \psi\right)^{-1}(Z(\psi \circ \phi(p))) \\
& =\left(D_{\phi(p)} \psi D_{p} \phi\right)^{-1}(Z(\psi \circ \phi(p))) \\
& =\left(D_{p}(\psi \circ \phi)\right)^{-1}(Z(\psi \circ \phi(p))) \\
& =(\psi \circ \phi)^{*}(Z)(p) .
\end{aligned}
$$

Let X be a vector field on M and $r \in P$. The double pushforward is

$$
\begin{aligned}
\psi_{*} \phi_{*}(X)(r) & =D_{\psi^{-1}(r)} \psi\left(\phi_{*}(X)\left(\psi^{-1}(r)\right)\right) \\
& =\left(D_{\psi^{-1}(r)} \psi D_{\phi^{-1}\left(\psi^{-1}(r)\right)}\right) \phi\left(X\left(\phi^{-1} \psi^{-1}(r)\right)\right) \\
& =D_{(\psi \circ \phi)^{-1}(r)}(\psi \circ \phi)\left(X\left((\psi \circ \phi)^{-1}(r)\right)\right) \\
& =(\psi \circ \phi)_{*}(X)(r) .
\end{aligned}
$$

Let X be a vector field on M and $p \in M$. Then

$$
\begin{aligned}
\phi^{*} \phi_{*}(X)(p) & =\left(D_{p} \phi\right)^{-1}\left(\phi_{*}(X)(\phi(p))\right) \\
& =\left(D_{p} \phi\right)^{-1} D_{\phi^{-1}(\phi(p))} \phi\left(X\left(\phi^{-1}(\phi(p))\right)\right) \\
& =X(p)
\end{aligned}
$$

The last property follows from the previous ones

$$
\left(\phi^{-1}\right)^{*}=\left(\phi^{-1}\right)^{*}\left(\phi^{*} \phi_{*}\right)=\left(\left(\phi^{-1}\right)^{*} \phi^{*}\right) \phi_{*}=\left(\phi \circ \phi^{-1}\right)^{*} \phi_{*}=i d^{*} \phi_{*}=\phi_{*}
$$

2. Another flow example

Let $M=\mathbb{R}^{2} \backslash\{0\}$ and consider the vector field $X(p)=\frac{\partial}{\partial x}$ for all $p \in M$. Define $b(p)$ to be the maximal (positive) time of existence for the flow of X starting at $p \in M$.
(a) Compute $b(p)$ for all $p \in M$.
(b) Verify that

$$
b(p)=\liminf _{q \rightarrow p} b(q)
$$

for all $p \in M$.
(c) Find the points where $\lim _{q \rightarrow p} b(q)$ does not exist.
(d) Verify directly that the maximal domain of existence

$$
\mathcal{U}=\{(p, t) \mid x \in M, a(p)<t<b(p)\}
$$

is open.

Solution:

The flow is $\phi_{X}^{t}((x, y))=(x+t, y)$.
(a) Only points on $I=\{(x, 0) \mid x<0\} \subset M$ cannot be flowed for infinite positive time. We have

$$
b(p)= \begin{cases}\infty, & p \notin I \\ -x, & p \in I\end{cases}
$$

(b) If $p \notin I$ then $\lim _{q \rightarrow p} b(q)$ as the set $\mathbb{R} \backslash I$ is open and b is infinity on this set. On I the function b is not continuous as there are arbitrarily close points with where b is ∞. Still $b(p)=\liminf _{q \rightarrow p} b(q)$ holds.
(c) \mathcal{U} is the union of open sets and thus open:

$$
\begin{aligned}
\mathcal{U}=(M \backslash \mathbb{R} \times\{0\}) \times \mathbb{R}) & \cup\{(x, y, t) \mid x>0, y \in \mathbb{R},-x<t<\infty\} \\
& \cup\{(x, y, t) \mid x<0, y \in \mathbb{R},-\infty<t<-x\}
\end{aligned}
$$

3. Left-invariant and right-invariant vector fields on matrix groups

Let $G=G l(n, \mathbb{R}) \subset \mathbb{R}^{n \times n}$ be the (Lie) group of invertible matrices. For A in $\mathbb{R}^{n \times n}$ define vector fields $X_{A}, Y_{A} \in C^{\infty}(T G)$ by

$$
X_{A}(B):=A B, \quad Y_{A}(B):=B A
$$

for $B \in G$.
For $C \in G$ define maps $L_{C}, R_{C}: G \rightarrow G$ by

$$
L_{C}(B):=C B, \quad R_{C}(B):=B C^{-1}
$$

for $B \in G$. These maps are called left and right translation by C.
(a) Verify

$$
L_{C} \circ L_{D}=L_{C D}, \quad R_{C} \circ R_{D}=R_{C D}
$$

(b) Conclude that L, R are injective homomorphisms $L, R: G \rightarrow \operatorname{Diff}(G)$.
(c) We call a vector field $Z \in C^{\infty}(T G)$

- left-invariant if $L_{C}^{*}(Z)=Z$ for all $C \in G$,
- right-invariant if $R_{C}^{*}(Z)=Z$ for all $C \in G$.

Which of X_{A}, Y_{A} is left/right-invariant?
(d) Show that any left-invariant or right-invariant vector field on G is either of the form X_{A} or Y_{A}.

Solution:

(a)

$$
\begin{gathered}
L_{C} \circ L_{D}(B)=L_{C}(D B)=C D B=L_{C D}(B) \\
R_{C} \circ R_{D}(B)=R_{C}\left(B D^{-1}\right)=B D^{-1} C^{-1}=B(C D)^{-1}=R_{C D}(B)
\end{gathered}
$$

(b) Direct consequence
(c) Y_{A} is left-invariant:

$$
\begin{aligned}
L_{C}^{*}\left(Y_{A}\right)(B) & =\left(D_{B} L_{C}\right)^{-1}\left(Y_{A}\left(L_{C}(B)\right)\right) \\
& =C^{-1}\left(Y_{A}(C B)\right) \\
& =C^{-1} C B A \\
& =B A \\
& =Y_{A}(B)
\end{aligned}
$$

X_{A} is left-invariant:

$$
\begin{aligned}
R_{C}^{*}\left(X_{A}\right)(B) & =\left(D_{B} R_{C}\right)^{-1}\left(X_{A}\left(R_{C}(B)\right)\right) \\
& =\left(X_{A}\left(B C^{-1}\right)\right) C \\
& =A B C^{-1} C \\
& =A B \\
& =X_{A}(B)
\end{aligned}
$$

(d) Denote $I \in G$ the identity matrix and let Z be a vector field with $X(I)=$ A. If Z is left-invariant then left-invariance for $C=B^{-1}$ ensures

$$
\begin{aligned}
Z(B) & =L_{B^{-1}}^{*}(Z)(B) \\
& =\left(D_{B} L_{B^{-1}}\right)^{-1}\left(Z\left(L_{B^{-1}}(B)\right)\right) \\
& =B Z(I)=B A=Y_{A}(B)
\end{aligned}
$$

Similarly, if Z is right-invariant then right-invariance for $C=B$ ensures

$$
\begin{aligned}
Z(B) & =R_{B}^{*}(Z)(B) \\
& =\left(D_{B} R_{B}\right)^{-1}\left(Z\left(R_{B}(B)\right)\right) \\
& =Z(I) B=A B=X_{A}(B)
\end{aligned}
$$

4. The Lie bracket and the matrix commutator

In this exercise we will show that

$$
\left[Y_{A}, Y_{B}\right]=Y_{[A, B]}
$$

where $\left[Y_{A}, Y_{B}\right]$ is calculated as the Lie bracket of vector fields and $[A, B]$ is the matrix commutator in $\mathbb{R}^{n \times n}$. In other words, the map $A \mapsto Y_{A}$, from matrices to vector fields, is a Lie algebra homomorphism.
(a) Show that the flow of Y_{A} is $\phi_{Y_{A}}^{t}(C)=C e^{t A}$ for $C \in G=G l(n, \mathbb{R})$.
(b) Show that the derivative of $\phi_{Y_{A}}^{t}$ at C is $D_{C} \phi_{Y_{A}}^{t}(E)=E e^{t A}$ for $E \in \mathbb{R}^{n \times n}$.
(c) We will see next week that the Lie derivative agrees with the Lie bracket. Compute $\left[Y_{A}, Y_{B}\right]$ using that $\left[Y_{A}, Y_{B}\right](C)=\mathcal{L}_{Y_{A}} Y_{B}(C)$ for all $C \in G$.

Solution:

(a) Indeed, $\phi_{Y_{A}}^{0}(C)=C$ and

$$
\frac{d}{d t} \phi_{Y_{A}}^{t}(C)=C e^{t A} A=Y_{A}\left(\phi_{Y_{A}}^{t}(C)\right)
$$

(b)

$$
\begin{aligned}
D_{C} \phi_{Y_{A}}^{t}(E) & =\left.\frac{d}{d s}\right|_{s=0} \phi_{Y_{A}}^{t}(C+s E) \\
& =\left.\frac{d}{d s}\right|_{s=0}(C+s E) e^{t A} \\
& =E e^{t A}
\end{aligned}
$$

Differential Geometry I Tom Ilmanen

D-MATH Fall 2023
(c)

$$
\begin{aligned}
{\left[Y_{A}, Y_{B}\right](C) } & =\mathcal{L}_{Y_{A}} Y_{B}(C) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{Y_{A}}^{t}\right)^{*}\left(Y_{B}\right)(C) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(D_{C} \phi_{Y_{A}}^{t}\right)^{-1}\left(Y_{B}\left(\phi_{Y_{A}}^{t}(C)\right)\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(D_{C} \phi_{Y_{A}}^{t}\right)^{-1}\left(Y_{B}\left(C e^{t A}\right)\right) \\
& \left.=\left.\frac{d}{d t}\right|_{t=0}\left(D_{C} \phi_{Y_{A}}^{t}\right)^{-1}\left(C e^{t A} B\right)\right) \\
& =\left.\frac{d}{d t}\right|_{t=0} C e^{t A} B e^{-t A} \\
& =C\left(\left.\frac{d}{d t}\right|_{t=0} e^{t A}\right) B+C B\left(\left.\frac{d}{d t}\right|_{t=0} e^{-t A}\right) \\
& =C(A B-B A) \\
& =C[A, B] \\
& =Y_{[A, B]}(C)
\end{aligned}
$$

