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Exercise Sheet 14
Not to be handed in

1. Another proof of the Jacobi identity

(a) Let X, Y, Z be smooth vector fields on a manifold. Prove the Jacobi iden-
tity

[[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0
using the identity

ϕ∗[Y, Z] = [ϕ∗Y, ϕ∗Z].
for ϕ = ϕt, the local flow of X, and then differentiating at t = 0.

(b) A derivation on an algebra (A, ·) is a linear map D : A → A that satisfies
the Leibniz rule:

D(y · z) = (Dy) · z + y · (Dz).
Prove that the Lie derivative LX is a derivation on the nonassociative
algebra (C∞(TM), [·, ·]).

Solution:

(a) Taking the derivative of (ϕt)∗[Y, Z] = [(ϕt)∗Y, (ϕt)∗Z] at t = 0 on both
sides yields

d

dt

∣∣∣
t=0

(ϕt)∗[Y, Z] = LX [Y, Z] = [X, [Y, Z]] = −[[Y, Z], X]

and
d

dt

∣∣∣
t=0

[(ϕt)∗Y, (ϕt)∗Z] =
[

d

dt

∣∣∣
t=0

(ϕt)∗Y, (ϕ0)∗Z

]
+

[
(ϕ0)∗Y,

d

dt

∣∣∣
t=0

(ϕt)∗Z

]
= [LXY, Z] + [Y, LXZ]
= [[X, Y ], Z] + [Y, [X, Z]]
= [[X, Y ], Z] − [Y, [Z, X]]
= [[X, Y ], Z] + [[Z, X], Y ]

where we used that [·, ·] is bilinear and switching entries produces a minus.
So

−[[Y, Z], X] = d

dt

∣∣∣
t=0

(ϕt)∗[Y, Z] = d

dt

∣∣∣
t=0

[(ϕt)∗Y, (ϕt)∗Z] = [[X, Y ], Z]+[[Z, X], Y ]

proves the Jacobi identity.
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(b) This is another formulation of the Jacobi identity:

LX([Y, Z]) = [X, [Y, Z]]
= −[[Y, Z], X]
Jacobi= [[X, Y ], Z] + [[Z, X], Y ]
= [[X, Y ], Z] + [Y, [X, Z]]
= [LXY, Z] + [Y, LXZ].

2. Commutation error

Let ϕs
X , ϕt

Y be the flows of two vector fields X, Y . Show that the following
formulas

(a) ϕt
Y ◦ ϕs

X(x) = x + sX + tY + O(|s|2 + |t|2)

(b) ϕt
Y ◦ ϕs

X(x) − ϕs
X ◦ ϕt

Y (x) = st[X, Y ] + O(|s|3 + |t|3)

(c) ϕ−t
Y ◦ ϕ−s

X ◦ ϕt
Y ◦ ϕs

X(x) = x + st[X, Y ] + O(|s|3 + |t|3)

hold in any coordinate system.

Solution:
As the statements are all local we may assume that X, Y are vector fields

on Rn. Also, fix a point x ∈ Rn. Define f : (−δ, δ) × (−δ, δ) → Rn by

f(t, s) = ϕt
Y ◦ ϕs

X(x)

where δ > 0 is chosen small enough such that the flows are defined. Taylor
expansion for f at (t, s) = 0 is

f(t, s) = f(0, 0) + ∂f

∂t
(0, 0)t + ∂f

∂s
(0, 0)s (1)

+ ∂2f

∂t2 (0, 0) t2

2 + ∂2f

∂t∂s
(0, 0)st + ∂2f

∂s2 (0, 0)s2

2 (2)

+ O(|s|3 + |t|3) (3)

We have f(0, 0) = x and first derivatives:

f(0, 0) = x

∂f

∂t
(t0, s0) = d

dt

∣∣∣
t=t0

f(t, s0) = d

dt

∣∣∣
t=t0

ϕt
Y (ϕs0

X (x)) = Y (ϕt0
Y (ϕs0

X (x)))

∂f

∂s
(0, s0) = d

ds

∣∣∣
s=s0

f(0, s) = d

dt

∣∣∣
s=s0

ϕs
X(x) = X(ϕs0

X (x))
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The second derivatives are

∂2f

∂t2 (0, 0) = d

dt

∣∣∣
t=0

∂f

∂t
(t, 0) = d

dt

∣∣∣
t=0

Y (ϕt
Y (x)) = DxY

d

dt

∣∣∣
t=0

ϕt
Y (x) = DxY (Y (x)) = DY Y (x)

∂2f

∂s∂t
(0, 0) = d

ds

∣∣∣
s=0

∂f

∂t
(0, s) = d

ds

∣∣∣
s=0

Y (ϕs
X(x)) = DxY

d

ds

∣∣∣
s=0

ϕs
X(x) = DxY (X(x)) = DXY (x)

∂2f

∂s2 (0, 0) = d

ds

∣∣∣
s=0

∂f

∂s
(0, s) = d

ds

∣∣∣
s=0

X(ϕs
X(x)) = DxX

d

ds

∣∣∣
s=0

ϕs
X(x) = DxX(X(x)) = DXX(x)

(a) Follows from

f(0, 0) = x,
∂f

∂t
(0, 0) = Y (x), ∂f

∂s
(0, 0) = X(x)

(b) Follows by the computations above. All terms cancel when taking the
difference except st(DXY (x)−DY X(x)) which is by definition st[X, Y ](x).

(c) By (b) we get

ϕ−t
Y ◦ ϕ−s

X (y) − ϕ−s
X ◦ ϕ−t

Y (y) = st[X, Y ] + O(|s|3 + |t|3)

Evaluated at y = ϕt
Y ◦ ϕs

X(x) we get

ϕ−t
Y ◦ ϕ−s

X ◦ ϕt
Y ◦ ϕs

X(x) − x = st[X, Y ] + O(|s|3 + |t|3)

which proves (c).

3. Old question, new computation

Given v, w ∈ R3, recall the vector fields defined in exercise sheet 11 problem 1:

Tv(x) = v, Rw(x) = w × x for x ∈ R3.

We already computed the Lie brackets of these vector fields. Compute

LTv Tw, LTv Rw, LRw Tv, LRv Rw

directly using the definition of the Lie derivative.

Solution:
Recall that the flow of Tv is ϕt

Tv
(x) = x + tv, and that the flow ϕt

Rw
is a

rotation with axis w and angle t|w| ∈ R. But as Rw(x) = w × x is a linear map.
The flow of Rw is also

ϕt
Rw

(x) = etRw (x)

because
d

dt
etRw (x) = Rw(etRw (x)).
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Since ϕt
Rw

(x) = etRw (x) is a linear map in x also

Dxϕt
Rw

(y) = DxetRw (y) = etRw (y)

for all x ∈ R3 and y ∈ R3. Also

Dxϕt
Tv

(y) = y = idR3(y)

for all x ∈ R3 and y ∈ R3.
We can now compute the Lie derivatives:

LTv
Tw(x) = d

dt

∣∣∣
t=0

(ϕt
Tv

)∗Tw(x)

= d

dt

∣∣∣
t=0

(Dxϕt
Tv

)−1(Tw(ϕt
Tv

(x)))

= d

dt

∣∣∣
t=0

(idR3(Tw(x + tv)))

= d

dt

∣∣∣
t=0

(idR3(w))

= d

dt

∣∣∣
t=0

(w) = 0

LTv
Rw(x) = d

dt

∣∣∣
t=0

(ϕt
Tv

)∗Rw(x)

= d

dt

∣∣∣
t=0

(Dxϕt
Tv

)−1(Rw(ϕt
Tv

(x)))

= d

dt

∣∣∣
t=0

(idR3(Rw(x + tv)))

= d

dt

∣∣∣
t=0

(idR3(w × (x + tv)))

= d

dt

∣∣∣
t=0

(w × (x + tv)) = w × v

LRw
Tv(x) = d

dt

∣∣∣
t=0

(ϕt
Rw

)∗Tv(x)

= d

dt

∣∣∣
t=0

(Dxϕt
Rw

)−1(Tv(ϕt
Rw

(x)))

= d

dt

∣∣∣
t=0

(e−tRw (Tv(etRw (x))))

= d

dt

∣∣∣
t=0

(e−tRw (v))

= −Rw(e−0Rw (v))
= −Rw(v) = −w × v
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LRv Rw(x) = d

dt

∣∣∣
t=0

(ϕt
Rw

)∗Rw(x)

= d

dt

∣∣∣
t=0

(Dxϕt
Rv

)−1(Rw(ϕt
Rv

(x)))

= d

dt

∣∣∣
t=0

(e−tRv (Rw(etRv (x))))

= d

dt

∣∣∣
t=0

(e−tRv (w × etRv (x)))

=
(

d

dt

∣∣∣
t=0

e−tRv

)
(w × e0Rv (x)) +

(
e−0Rv

(
w × d

dt

∣∣∣
t=0

(
etRv

)
(x)

))
= −Rv(w × x) + (w × Rv(x))
= −v × (w × x) + w × (v × x)
= (w × x) × v + (x × v) × w

= −(v × w) × x = −Rv×w(x) = Rw×v(x)

where we used the Jacobi identity for the cross product to get to the last line.

4. Twigs on a stream

Let X, Y be smooth vector fields. Consider the vector field

Y t = (ϕt
X)∗(Y ).

(a) Consider the vector field

X(x, y) = ∂

∂x
− yg(x) ∂

∂y

where g : R → [0, 1] is a bump function which is 1 on [−1, 1] and 0 outside
[−2, 2]. Draw the vector field X, and the flow ϕt

X by sketching some
integral curves.

(b) Draw Y t for Y = ∂
∂y for different times e.g. t = 0, 1, 2, 5.

(c) A metaphor for the vector field Y t is "twigs on a stream". Explain. Is this
a good metaphor?

Solution:

(a) The vector field is
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and has integral curves
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(b) Let us draw qualitatively some arrows of Y t for points on the x-axis. If
an arrow crosses two integral lines, then the pushed forward vector also
crosses two integral lines. The first figure shows the initial vector field. The
second figure shows the vector field after moving by t = 1, where the time 1
means that a vector was transported one more to the right. So in the fifth
figure the original left vector wandered all over to the right of the image.
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(c) To get the directions, yes. But pushforwards can also change the length
of vector fields. Also, water is incompressible, so ϕt

X should be volume
preserving, i.e. det Dpϕt

X = 1 for all p. Not all vector fields satisfy that.

5. Parking is difficult

A car moves in the plane R2, identified with C. The movement of the car is
given by its position (x(t), y(t)) ∈ R2 and its direction given by the unit vector
θ ∈ S1. Moreover, we assume that the direction of movement always coincides
with the direction of the car. Now consider the vector fields

X(x, y, θ) := (cos θ, sin θ, 1)
Y (x, y, θ) := (cos θ, sin θ, −1)

on the configuration space M := R2 × S1.

(a) What happens to the car if it moves by X? If it moves by Y ?

(b) Compute [X, Y ].

(c) Why is parking so difficult? Explain fully and carefully.

Solution:

(a) The vector field X is in R2-direction the vector (cos θ, sin θ) which points
in direction of the car. In S1-direction the vector 1 is pointing counter-
clockwise, i.e. to the left from the point of view of the car direction. The
same for Y but the S1-direction is pointing right. The flows of the vector
field are

ϕt
X(x, y, θ) = (x + sin(θ + t) − sin θ, y − cos(θ + t) + cos θ, θ + t)

ϕt
Y (x, y, θ) = (x − sin(θ − t) + sin θ, y + cos(θ − t) − cos θ, θ − t)
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because

d

dt
ϕt

X(x, y, θ) = (cos(θ + t), sin(θ + t), 1)

= X
(
ϕt

X (x, y, θ)
)

and
ϕ0

X(x, y, θ) = (x, y, θ)

Similarly for Y . So for fixed starting configuration (x, y, θ) the car moves
in R2 with X counterclockwise in a circle of radius 1 and initial direction
θ. So the midpoint of the circle is (x−sin θ, y+cos θ). Similarly for Y : For
fixed starting configuration (x, y, θ) the car moves in R2 with Y clockwise
in a circle of radius 1 and initial direction θ. So the midpoint of the circle
is (x + sin θ, y − cos θ).

(b) In coordinates (x, y, θ) = (z, u) with z ∈ C and u ∈ S1 we have X̃(z, u) =
(u, iu) and Ỹ (z, u) = (u, −iu) we compute

[X̃, Ỹ ]1 = X̃1 ∂Ỹ 1

∂z
− Ỹ 1 ∂X̃1

∂z
+ X̃2 ∂Ỹ 1

∂u
− Ỹ 2 ∂X̃1

∂u
= iu − (−iu) = 2iu

[X̃, Ỹ ]2 = X̃1 ∂Ỹ 2

∂z
− Ỹ 1 ∂X̃2

∂z
+ X̃2 ∂Ỹ 2

∂u
− Ỹ 2 ∂X̃2

∂u
= u − u = 0.

So [X̃, Ỹ ](z, u) = (2iu, 0). Back in the coordinates (x, y, θ) this is

[X, Y ](x, y, θ) = (−2 sin θ, 2 cos θ, 0).

(c) Suppose the initial θ is 0, then [X, Y ] = (0, 2, 0). Let us call

ϕ−t
Y ◦ ϕ−t

X ◦ ϕt
Y ◦ ϕt

X(x)

one parking movement by time t (see the image drawn in the lecture). By
exercise 2c: We we get back to x with an error t2[X, Y ] = (0, 2t2, 0). So
we moved in y-direction by 2t2. We interpret that in the following way.
To park sideways when having space t in the horizontal direction we can
move sideways by t2. For small t, t2 is very small, so we need to do the
parking movement several times if the space t is small.
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