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Exercise Sheet 2
To be handed in until October 4

1. On curvature and torsion of curves in R3

(a) Compute the scalar curvature k and torsion l at t = 0 for the curve

t 7→ (t, at2, bt3) a, b ∈ R.

(b) Show that if a curve γ in R3 has identically vanishing scalar torsion then
γ lies in a plane.

(c) Suppose that a curve γ in R3 has constant scalar curvature and torsion.
Show that γ must be a helix.

Solution:

(a) The curve γ is not parametrized by arc length, so let’s recall and derive
general formulas for the curvature and torsion for curves in R3.

Claim. (i) (lecture) For a regular curve γ in Rn its curvature vector is

κ = 1
|γt|2

(
γtt −

〈
γtt,

γt

|γt|

〉
γt

|γt|

)
,

(ii) In dimension n = 3 the scalar curvature k of a regular curve γ is

k = |γt × γtt|
|γt|3

and for an ordinary curve (i.e. k(t) ̸= 0 for all t) its torsion is

l = ⟨γt × γtt, γttt⟩
|γt × γtt|2

.

Proof. (i) The proof was given in the lecture.
(ii) The curvature vector in dimension 3 can be written as

κ = |γt|2γtt − ⟨γtt, γt⟩ γt

|γt|4
= (γt × γtt) × γt

|γt|4
,

where we used in the last equality the vector product identity

(u × v) × w = ⟨u, w⟩v − ⟨v, w⟩u.
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As γt × γtt is orthogonal to γt we get

k = |κ| = |(γt × γtt) × γt|
|γt|4

= |γt × γtt||γt|
|γt|4

= |γt × γtt|
|γt|3

The formula for the normailized vector is

N = κ

k
= (γt × γtt) × γt

|γt × γtt||γt|
.

The binormal B = τ × N is orthogonal to τ and to N . Looking at
the formulas. B must be parallel to γt × γtt. After normalizing we
get

B = γt × γtt

|γt × γtt|
.

The torsion l is given by

l =
〈

dN

ds
, B

〉
= −

〈
dB

ds
, N

〉
= − 1

|γt|

〈
dB

dt
, N

〉
= − 1

|γt|

〈
(γtt × γtt + γt × γttt)|γt × γtt| − γt × γtt

d
dt (|γt × γtt|)

|γt × γtt|2
, N

〉

= − 1
|γt|

〈
γt × γttt

|γt × γtt|
, N

〉
= − 1

|γt|

〈
γt × γttt

|γt × γtt|
,

(γt × γtt) × γt

|γt × γtt||γt|

〉
= −⟨γt × γttt, (γt × γtt) × γt⟩

|γt|2|γtt × γt|2

= −
〈
γt × γttt, |γt|2γtt − ⟨γt, γtt⟩γt

〉
|γt × γtt|2

= −⟨γt × γttt, γtt⟩
|γt × γtt|2

= ⟨γt × γtt, γttt⟩
|γt × γtt|2

,

where in the last step we used

⟨u × v, w⟩ = −⟨u × w, v⟩.

So l is measuring the component of the third derivative of γ in direc-
tion B.

In the example stated in the exercise we have

γt = (1, 2at, 3bt2) γtt = (0, 2a, 6bt) γttt = (0, 0, 6b).
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Hence at t = 0 we get
k = |γt × γtt|

|γt|3
= 2a

and
l = ⟨γt × γtt, γttt⟩

|γtt × γt|2
= 3b

a
.

(b) Recall from the lecture that the vectors τ(s), N(s), B(s) form an orthonor-
mal basis (ONB) of R3 for each s ∈ [0, L]. Moreover, they change accord-
ing to the following rules along the curve

d

ds

 τ
N
B

 =

 0 k 0
−k 0 l
0 −l 0

  τ
N
B


If l = 0 then dB

ds = 0. So B(s) = B0 is a constant unit vector B0 ∈ R3

for all s. As N(s) and τ(s) are orthogonal to B(s) = B0 for all s, the
vector τ(s) (also N but not important here) lies in the plane orthogonal
to B0. But as γ is just τ integrated once, also γ must stay in the plane
orthogonal to B0.

(c) We show that the helix has constant curvature k and constant torsion l
and then use uniqueness from exercise 2.
Any helix in z-direction in R3 is given by γ : [c, d] → R3 with

γ(t) = (R cos(t), R sin(t), mt)

for some c, d, m all in R and R > 0. The derivatives are:

γt = (−R sin(t), R cos(t), m)
γtt = (−R cos(t), −R sin(t), 0)

γttt = (R sin(t), −R cos(t), 0)

Using the formulas derived in part (a) we get

k = R

R2 + m2 l = m

R2 + m2 .

Given l, k we can determine R and m:

k2 + l2 = 1
R2 + m2

That means R = k
k2+l2 and m = l

k2+l2 . Therefore, for each pair of func-
tions (k, l), there is a helix with curvature k and torsion l. Moreover, there
is no other curve up to rigid motions of space by exercise 2 with the same
(k, l).

3



Differential Geometry I
D-MATH

Tom Ilmanen
Fall 2023

2. Curvature and torsion determine a curve in R3 up to rigid motion

Prove that any given smooth functions k(s), l(s), with k(s) > 0 determine a
curve in R3 with curvature k(s) and torsion l(s) (where s is the arclength)
that is unique up to rigid motion of space (i.e. a composition of rotations and
translations).

Hint: Theorem. (Existence and uniqueness for ODEs)
Let U ⊆ R × Rn be an open set and let f : U → Rn be continuous. Moreover, suppose
f is locally Lipschitz in the second coordinate i.e. for all (t0, y0) ∈ U there is an open
neighbourhood W ⊂ U of (t0, y0) and M > 0 such that |f(t, y2) − f(t, y2)| ≤ M |y2 − y1| for
all (t, y1), (t, y2) ∈ W.

For any (t0, y0) ∈ U consider the ODE system

(∗) =
{

ẏ(t) = f(t, y(t))
y(t0) = x0.

Then
i (Existence) There exists a small open interval I containing t0 and a continuously dif-

ferentiable function y : I → Rn that solves (∗).
ii (Uniqueness) Suppose that there are two solutions y, ỹ of (∗) defined on intervals I and

Ĩ respectively. Then y, ỹ agree on the intersection I ∩ Ĩ.

Solution:
Existence: Let us first construct a canonical curve γ in R3 which is parametrized

by arclength with curvature k and torsion l for any given functions k and l with
k(s) > 0 and defined for s ∈ I, where I is an interval. Denote by (e1, e2, e3) the
standard basis of R3 and let this be the initial condition for (τ, N, B) for the
ODE

d

ds

 τ
N
B

 =

 0 k 0
−k 0 l
0 −l 0

  τ
N
B

 .

By the theorem given in the hint, there is a unique solution of an orthonormal
frame (τ, N, B) defined on the interval s ∈ I.

(Technical remark: We can find that solutions exist for any s ∈ I a priori
only defined on a small interval containing s but which agree on the intersection
with an interval for another s′ ∈ I. So actually a solution exists defined on all
of I.)

In particular, given τ we can recover a curve γ by integration and fixing the
start value γ(0) = 0 (assuming 0 ∈ I) which has by construction curvature k
and torsion l.

Uniqueness: Suppose γ̃ : I → R3 is another curve that is parametrized by
arclength, has curvature k and torsion l. Without loss of generality 0 ∈ I. We
want to prove that we can send γ̃ onto γ by a rigid motion of space in R3.

There is a unique rigid motion of space A (a rotation composed with a
translation) that sends γ̃(0) to γ(0), τ̃(0) to τ(0) = e1 and Ñ(0) to N(0) = e2
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(and automatically also B̃(0) to B(0)). We will show now that A sends the
entire curve γ̃ to γ. This finishes the proof of uniqueness.

By definition of A, the curve Aγ̃ and our canonical curve γ have the same
initial conditions for (τ, N, B). To prove that Aγ̃ = γ it is enough to show that
Aγ̃ satisfies the same ODE as γ and then use the uniqueness part of the ODE
theorem that is given in the hint.

Informally, we already used in the lecture that the curvature and the torsion
of a translated and rotated curve stays the same. Let us also give a more formal
argument: As the orthonormal frame for γ̃ solves the ODE with given (k, l)
we just need to show that the orthonormal frame of Aγ̃ also solves the ODE
and then use uniqueness. Suppose X is the matrix X̃ = (τ̃ | Ñ |B̃) and suppose
(τ̃ , Ñ , B̃) solves the ODE, i.e. denoting

M(s) =

 0 k(s) 0
−k(s) 0 l(s)

0 −l(s) 0


we assume d

ds X̃ = X̃MT . But then also AX̃ = (Aτ̃ | AÑ |AB̃) satisfies d
ds AX̃ =

A d
ds X̃ = AX̃MT . So (Aτ̃, AÑ, AB̃) also solves the ODE. This finishes the proof

that Aγ̃ = γ.

For the following problems, use the definitions:

k1, k2 : principal curvatures
H = k1 + k2 : mean curvature

K = k1k2 : Gauss curvature

3. Curvatures of some standard surfaces

Compute the curvatures k1, k2, H and K for

(a) a sphere of radius R,

(b) a cylinder of radius R.

Solution:

(a) Let M be the sphere in R3 of radius R centered at the origin. Let us
choose N(p) = −p

R as the normal vector of a point p on M . The tangent
space TpM are the vectors lying in the plane orthogonal to N(p). Recall
that for v ∈ TpM \ {0} we defined

Qp(v) =< κγ(0), N >,
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where κγ(t) is the curvature vector of a curve γ : (−ε, ε) → M with
γ(0) = p and γt(0) = v. In the lecture, we have seen that the definition is
well-defined, i.e. does not depend on the choice of γ.
To get all directions v ∈ TpM with |v| = 1 we can choose as the curves
the great circles. These are all circles of radius R which have constant
curvature 1

R and curvature vector pointing everywhere in the direction of
the origin, so pointing to the same direction as the normal vector field N .
Indeed, we have already seen the computation of a circle in the plane R2

and computing the unit tangent vectors and curvature vectors commutes
with rotation and translation of the curve.
So we proved that Qp(v) = 1

R for all unit tangent vectors v ∈ TpM and
hence

k1 = min
v∈TpM,|v|=1

= 1
R

, k2 = max
v∈TpM,|v|=1

= 1
R

.

(b) Let M be the cylinder in R3 of radius R, that is

M = {(x, y, z) ∈ R3 | y2 + z2 = R2}.

Because of obvious rotational and translational symmetry, it is enough
to compute the curvature for only one point, let’s say for p = (0, 0, R).
The normal vector is given by p = (0, 0, −1). The tangent plane TpM
at p is given z = 0, so all unit tangent vectors at p are of the form
vθ = (cos θ, sin θ, 0) for some θ ∈ [0, 2π). To compute Q(vθ) let us look at
the curve given by intersecting M with the plane orthogonal to vθ+ π

2
. For

θ = 0 we get two straight lines but only one passing through p. Straight
lines have curvature 0, so Q(v0) = 0. For the other angles θ ∈ (0, 2π) we
get an ellipse centered at the origin. One axis is of length a = R the other
axis of length b = R

sin θ . So we need to compute the curvature of an ellipse
γ of the form t 7→ (a cos(t), b sin(t)) at t = 0. We have

γt(t) = (−a sin(t), b cos(t)), γtt(t) = (−a cos(t), −b sin(t))

So using the formula for the curvature of a curve that is not parametrized
by arclength we get

k = |γt × γtt|
|γt|3

= |(−a sin(t), b cos(t), 0) × (−a cos(t), −b sin(t), 0)|
|(−a sin(t), b cos(t), 0)|3

= |(0, 0, ab)|
(a2 sin2(t) + b2 cos2(t))3/2

= ab

(a2 sin2(t) + b2 cos2(t))3/2 .
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For t = 0 this is κ(0) = a
b2 . In our case a = R and b = R

sin θ and as the
direction of the curvature vector of the ellipse is parallel to the normal N
we get

Q(vθ) = κ(0) = sin2 θ

R

for θ ∈ [0, 2π). So the principal curvatures are k1 = 0 in direction (±1, 0, 0)
and k2 = 1

R in direction (0, ±1, 0).

4. Curvatures of surfaces of revolution

A surface of revolution in R3 is defined by

M = Mf := {(x, y, z) ∈ I × R2 | f(x) =
√

y2 + z2} ⊂ R3,

where f : I → R is a smooth positive function, I an interval. The curve γ given
by y = f(x) in the plane R2 is called the generator of M . Find k1, k2, H and
K for M .

Hint: You can use without proof (but think about it) that the principal directions of
a surface of revolution are in the direction tangent to γ and normal to γ. Useful notation:
r =

√
y2 + z2 and reiθ = y + iz = (y, z).

Solution:
Using the rotational symmetry of M it is enough to compute the curvature

at a point p = (x, 0, f(x)). Denote ex the tangent vector to the surface in x
direction and eθ the tangent vector to the surface in the direction of the rotation,
i.e.

ex(p) = (1, 0, fx(x))√
1 + fx(x)2

, eθ(p) = (0, 1, 0).

The tangent plane TpM is spanned by ex and eθ. Let us choose the outward-
pointing normal vector to the surface at p given by

N(p) = (−fx(x), 0, 1)√
1 + fx(x)2

.

Denote by kx the curvature of the surface of M in direction ex. This is just
the curvature of the graph of the function f as it parametrizes a curve with
direction ex at p. We have seen the formula of the curvature of a graph of a
function f : I → R in the lecture. So we get

kx(p) = fxx(x)
(1 + f2

x(x))3/2 .
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Denote kθ the curvature in the direction of the rotation. As the surface of
revolution intersected with a plane with constant x-coordinate is just a circle γ
of radius f(x) we get a scalar curvature 1

f(x) . However, the normal to M is not
parallel to the curvature vector of this circle. Actually,

kθ(p) =
〈

(0, 0, −1)
f(x) ,

(−fx(x), 0, 1)√
1 + fx(x)2

〉
= −1

f(x)
√

1 + fx(x)2
.

In the lecture, we proved that kθ, kx are actually the principal curvatures of
M and eθ, ex are the principal directions using that reflecting M across the
xz-plane in R3 sends M to M .

Therefore, the curvatures are

H = kθ + kx = 1√
1 + f2

x

(
fxx

1 + f2
x

− 1
f

)
, K = kθkx = − fxx

f(1 + f2
x)2 .
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