Exercise Sheet 3

To be handed in until October 11

1. The Catenoid

Compute k_{1}, k_{2}, H and K for the catenoid.

Solution:

The catenoid is the surface of revolution for the generating curve $y=f(x)$, where $f(x)=\cosh x$. So we can apply the formulas derived in exercise 4 from sheet 2 . The derivatives of f are:

$$
f_{x}(x)=\sinh x, \quad f_{x x}=\cosh x
$$

For $p=(x, y, z)$ we get in the curve direction e_{x} curvature

$$
k_{x}(p)=\frac{f_{x x}(x)}{\left(1+f_{x}^{2}(x)\right)^{3 / 2}}=\frac{\cosh x}{\left(1+\sinh ^{2} x\right)^{3 / 2}}=\frac{1}{\cosh ^{2} x}
$$

since $\cosh ^{2} x-\sinh ^{2} x=1$.
In the rotation direction e_{θ} we get curvature

$$
k_{\theta}(p)=\frac{-1}{f(x) \sqrt{1+f_{x}(x)^{2}}}=\frac{-1}{\cosh (x) \sqrt{1+\sinh ^{2}}}=-\frac{1}{\cosh ^{2} x}
$$

In the lecture, we have seen that for surfaces of revolution, e_{x} and e_{θ} are the principal directions. Hence k_{x} and k_{θ} are the principal curvatures.

Therefore, as

$$
H=k_{x}+k_{\theta}=0,
$$

the catenoid is a minimal surface. Its Gauss curvature is

$$
K(p)=\frac{-1}{\cosh ^{4} x}
$$

2. The Helicoid

Compute k_{1}, k_{2}, H and K for the helicoid.

Solution:

The helicoid is the image of $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by the parametrization

$$
(r, t) \mapsto(r \cos t, r \sin t, m t)
$$

Claim. Let us derive the formula for the 2 nd fundamental form for a regular parametrization Ψ of a surface M. Regular here means that the vectors $\Psi_{r}(r, t), \Psi_{t}(r, t)$ are linearly independent for all r, t, so in particular span the tangent space $T_{p} M$ at $p=\Psi(r, t)$. We claim that with respect to this basis the 2nd fundamental form is given by the following symmetric matrix

$$
\left(\begin{array}{ll}
\left\langle\Psi_{r r}, N\right\rangle & \left\langle\Psi_{r t}, N\right\rangle \\
\left\langle\Psi_{t r}, N\right\rangle & \left\langle\Psi_{t t}, N\right\rangle
\end{array}\right) .
$$

Proof. The normal vector at $p \in M$ is

$$
N=\frac{\Psi_{r} \times \Psi_{t}}{\left|\Psi_{r} \times \Psi_{t}\right|}
$$

The 2nd fundamental form is a bilinear form $A: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$. So it is enough to know it for a basis of $T_{p} M$. Recall from the lecture that for $X, Y \in T_{p} M$ we have $A(X, Y)=-\left\langle D_{X} N, Y\right\rangle$. Let us apply this formula to the basis Ψ_{r}, Ψ_{t}.

$$
D_{\Psi_{r}} N=(N \circ \Psi)_{r}=\frac{\left(\Psi_{r r} \times \Psi_{t}+\Psi_{r} \times \Psi_{t r}\right)}{\left|\Psi_{r} \times \Psi_{t}\right|}-\frac{\left(\Psi_{r} \times \Psi_{t}\right) \frac{d}{d r}\left|\Psi_{r} \times \Psi_{t}\right|}{\left|\Psi_{r} \times \Psi_{t}\right|^{2}}
$$

Analogeously we get a formula for $D_{\Psi_{t}} N$. Note that the $\Psi_{r} \times \Psi_{t}$ is orthogonal to Ψ_{r} and to Ψ_{t} so the last term will cancel, once we take the scalar product with Ψ_{r} or Ψ_{t}. Indeed,

$$
\begin{aligned}
A\left(\Psi_{r}, \Psi_{r}\right)=-\left\langle D_{\Psi_{r}} N, \Psi_{r}\right\rangle & =-\left\langle\frac{\Psi_{r r} \times \Psi_{t}+\Psi_{r} \times \Psi_{t r}}{\left|\Psi_{r} \times \Psi_{t}\right|}, \Psi_{r}\right\rangle \\
& =-\frac{\left\langle\Psi_{r r} \times \Psi_{t}, \Psi_{r}\right\rangle}{\left|\Psi_{r} \times \Psi_{t}\right|} \\
& =-\frac{\operatorname{det}\left(\Psi_{r}\left|\Psi_{r r}\right| \Psi_{t}\right)}{\left|\Psi_{r} \times \Psi_{t}\right|} \\
& =\frac{\operatorname{det}\left(\Psi_{r r}\left|\Psi_{r}\right| \Psi_{t}\right)}{\left|\Psi_{r} \times \Psi_{t}\right|} \\
& =\frac{\left\langle\Psi_{r r}, \Psi_{r} \times \Psi_{t}\right\rangle}{\left|\Psi_{r} \times \Psi_{t}\right|} \\
& =\left\langle\Psi_{r r}, N\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
A\left(\Psi_{t}, \Psi_{t}\right)=-\left\langle D_{\Psi_{t}} N, \Psi_{t}\right\rangle & =-\left\langle\frac{\Psi_{r t} \times \Psi_{t}+\Psi_{r} \times \Psi_{t t}}{\left|\Psi_{r} \times \Psi_{t}\right|}, \Psi_{t}\right\rangle \\
& =-\frac{\left\langle\Psi_{r} \times \Psi_{t t}, \Psi_{t}\right\rangle}{\left|\Psi_{r} \times \Psi_{t}\right|} \\
& =-\frac{\operatorname{det}\left(\Psi_{t}\left|\Psi_{r}\right| \Psi_{t t}\right)}{\left|\Psi_{r} \times \Psi_{t}\right|} \\
& =\frac{\operatorname{det}\left(\Psi_{t t}\left|\Psi_{r}\right| \Psi_{t}\right)}{\left|\Psi_{r} \times \Psi_{t}\right|} \\
& =\frac{\operatorname{det}\left(\Psi_{t t}\left|\Psi_{r}\right| \Psi_{t}\right)}{\left|\Psi_{r} \times \Psi_{t}\right|} \\
& =\left\langle\Psi_{t t}, N\right\rangle \\
A\left(\Psi_{r}, \Psi_{t}\right)=-\left\langle D_{\Psi_{r}} N, \Psi_{t}\right\rangle & =\left\langle\frac{\Psi_{r r} \times \Psi_{t}+\Psi_{r} \times \Psi_{t r}}{\left|\Psi_{r} \times \Psi_{t}\right|}, \Psi_{t}\right\rangle \\
& =-\frac{\left\langle\Psi_{r} \times \Psi_{t r}, \Psi_{t}\right\rangle}{\left|\Psi_{r} \times \Psi_{t}\right|} \\
& =-\frac{\operatorname{det}\left(\Psi_{t}\left|\Psi_{r}\right| \Psi_{t r}\right)}{\left|\Psi_{r} \times \Psi_{t}\right|} \\
& =\frac{\operatorname{det}\left(\Psi_{t r}\left|\Psi_{r}\right| \Psi_{t}\right)}{\left|\Psi_{r} \times \Psi_{t}\right|} \\
& =\left\langle\Psi_{t r}, N\right\rangle
\end{aligned}
$$

The helicoid is the image of $\Psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by the parametrization

$$
(r, t) \mapsto(r \cos t, r \sin t, m t)
$$

The tangent plane at a given point $p=\Psi(r, t) \in \mathbb{R}^{3}$ is spanned by $\Psi_{r}(r, t)$ and $\Psi_{t}(r, t)$, which are

$$
\Psi_{r}(r, t)=(\cos t, \sin t, 0) \quad \Psi_{t}(r, t)=(-r \sin t, r \cos t, m)
$$

So the normal vector to the surface is

$$
N=\frac{\Psi_{r} \times \Psi_{t}}{\left|\Psi_{r} \times \Psi_{t}\right|}=\frac{(m \sin (t),-m \cos (t), r)}{\sqrt{r^{2}+m^{2}}}
$$

To compute the 2 nd fundamental form, we compute the second derivatives:

$$
\begin{aligned}
& \Psi_{r r}(r, t)=(0,0,0) \\
& \Psi_{r t}(r, t)=(-\sin t, \cos t, 0) \\
& \Psi_{t t}(r, t)=(-r \cos t,-r \sin t, 0)
\end{aligned}
$$

Hence in the basis $\Psi_{r}(r, t), \Psi_{t}(r, t)$ of $T_{p} M$ the 2 nd fundamental form is

$$
\left(\begin{array}{cc}
\left\langle\Psi_{r r}, N\right\rangle & \left\langle\Psi_{r t}, N\right\rangle \\
\left\langle\Psi_{t r}, N\right\rangle & \left\langle\Psi_{t t}, N\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
0 & \frac{-m}{\sqrt{r^{2}+m^{2}}} \\
\frac{-m}{\sqrt{r^{2}+m^{2}}} & 0
\end{array}\right)
$$

We can not yet read the principal curvatures from this matrix, only in case the matrix is with respect to an orthonormal basis. However, in our situation, Ψ_{r} and Ψ_{t} are already orthogonal, and Ψ_{r} is normalized. With respect to the ONB $e_{1}=\Psi_{r}$ and $e_{2}=\frac{\Psi_{t}}{\left|\Psi_{t}\right|}$, the 2nd fundamental form is represented by matrix

$$
\left(\begin{array}{cc}
0 & \frac{-m}{r^{2}+m^{2}} \\
\frac{-m}{r^{2}+m^{2}} & 0
\end{array}\right)
$$

as both entries get scaled by $\frac{1}{\left|\Psi_{t}\right|}=\frac{1}{\sqrt{r^{2}+m^{2}}}$.
Note that the entries on the diagonal are equal to the curvature of the helix that we computed in sheet 2 exercise 1c. The curvatures are

$$
\begin{aligned}
H & =\operatorname{tr}(A)=0 \\
K & =\operatorname{det} A=-\frac{m^{2}}{\left(r^{2}+m^{2}\right)^{2}} \\
-k_{1} & =k_{2}=\frac{m}{r^{2}+m^{2}}
\end{aligned}
$$

3. Compact surfaces have positive K

Let M be a compact surface in \mathbb{R}^{3}. Prove that there is a point p in M such that $K(p)>0$.

Solution:

Let $p \in M$ be the point in M with maximal Euclidean norm (exists as M is compact). Then M is contained in a ball B of radius $R=|p|$ centered at the origin. Let S be the sphere of radius R centered at the origin (the boundary of the ball). Note that also by definition of R that $p \in S$. Moreover, the tangent space $T_{p} M$ at p is the same as $T_{p} S$. Indeed, as p was the point in M with maximal norm, in no direction in M the norm can increase. In other words, as p is the point of maximal norm, it is in particular a critical point of the norm function $|\cdot|: M \rightarrow[0, \infty)$.

Moreover, as M is contained in the ball B and $p \in S$ is on the boundary, the curvature of curves in M going through p must at least curve as much as curves in the sphere S at p to stay inside B. As the the normal of S and the normal of M at p agree we have $k_{1}(p), k_{2}(p) \geq \frac{1}{R}$ (or $k_{1}, k_{2} \leq \frac{-1}{R}$ for outward pointing normal). In any case,

$$
K(p)=k_{1}(p) k_{2}(p) \geq \frac{1}{R^{2}}
$$

4. Vanishing 2nd fundamental form implies planar surface

Suppose M is a connected surface in \mathbb{R}^{3} with 2 nd fundamental form A vanishing everywhere. Show that M is contained in a plane.

Solution:

Let N be the normal to the surface M. We want to show that N is constant. Equivalently, as M is connected, it is enough to show that the directional derivative $D_{X} N(p)=0$ for each point $p \in M$ and direction $X \in T_{p} M$. Note that $D_{X} N(p) \in T_{p} M$ is a vector. To show that is zero, we test it against every vector $Y \in T_{p} M$. But using the formula from the lecture

$$
\left\langle D_{X} N(p), Y\right\rangle=A(X, Y)=0
$$

we get the claim as $A=0$ by assumption. This shows that the normal $N(p)$ is the same vector for all p, and hence M lies in a plane orthogonal to it.

