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1. The Catenoid

Compute k1, k2, H and K for the catenoid.

Solution:
The catenoid is the surface of revolution for the generating curve y = f(x),

where f(x) = cosh x. So we can apply the formulas derived in exercise 4 from
sheet 2. The derivatives of f are:

fx(x) = sinh x, fxx = cosh x

For p = (x, y, z) we get in the curve direction ex curvature

kx(p) = fxx(x)
(1 + f2

x(x))3/2 = cosh x

(1 + sinh2 x)3/2
= 1

cosh2 x

since cosh2 x − sinh2 x = 1.
In the rotation direction eθ we get curvature

kθ(p) = −1
f(x)

√
1 + fx(x)2

= −1
cosh(x)

√
1 + sinh2

= − 1
cosh2 x

.

In the lecture, we have seen that for surfaces of revolution, ex and eθ are the
principal directions. Hence kx and kθ are the principal curvatures.

Therefore, as
H = kx + kθ = 0,

the catenoid is a minimal surface. Its Gauss curvature is

K(p) = −1
cosh4 x

.

2. The Helicoid

Compute k1, k2, H and K for the helicoid.

Solution:
The helicoid is the image of Ψ : R2 → R3 given by the parametrization

(r, t) 7→ (r cos t, r sin t, mt).
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Claim. Let us derive the formula for the 2nd fundamental form for a regu-
lar parametrization Ψ of a surface M . Regular here means that the vectors
Ψr(r, t), Ψt(r, t) are linearly independent for all r, t, so in particular span the
tangent space TpM at p = Ψ(r, t). We claim that with respect to this basis the
2nd fundamental form is given by the following symmetric matrix(

⟨Ψrr, N⟩ ⟨Ψrt, N⟩
⟨Ψtr, N⟩ ⟨Ψtt, N⟩

)
.

Proof. The normal vector at p ∈ M is

N = Ψr × Ψt

|Ψr × Ψt|
.

The 2nd fundamental form is a bilinear form A : TpM × TpM → R. So it
is enough to know it for a basis of TpM . Recall from the lecture that for
X, Y ∈ TpM we have A(X, Y ) = −⟨DXN, Y ⟩. Let us apply this formula to the
basis Ψr, Ψt.

DΨr
N = (N ◦ Ψ)r = (Ψrr × Ψt + Ψr × Ψtr)

|Ψr × Ψt|
−

(Ψr × Ψt) d
dr |Ψr × Ψt|

|Ψr × Ψt|2

Analogeously we get a formula for DΨtN . Note that the Ψr × Ψt is orthogonal
to Ψr and to Ψt so the last term will cancel, once we take the scalar product
with Ψr or Ψt. Indeed,

A(Ψr, Ψr) = −⟨DΨr
N, Ψr⟩ = −

〈
Ψrr × Ψt + Ψr × Ψtr

|Ψr × Ψt|
, Ψr

〉
= −⟨Ψrr × Ψt, Ψr⟩

|Ψr × Ψt|

= −det(Ψr|Ψrr|Ψt)
|Ψr × Ψt|

= det(Ψrr|Ψr|Ψt)
|Ψr × Ψt|

= ⟨Ψrr, Ψr × Ψt⟩
|Ψr × Ψt|

= ⟨Ψrr, N⟩
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A(Ψt, Ψt) = −⟨DΨtN, Ψt⟩ = −
〈

Ψrt × Ψt + Ψr × Ψtt

|Ψr × Ψt|
, Ψt

〉
= −⟨Ψr × Ψtt, Ψt⟩

|Ψr × Ψt|

= −det(Ψt|Ψr|Ψtt)
|Ψr × Ψt|

= det(Ψtt|Ψr|Ψt)
|Ψr × Ψt|

= det(Ψtt|Ψr|Ψt)
|Ψr × Ψt|

= ⟨Ψtt, N⟩

A(Ψr, Ψt) = −⟨DΨr N, Ψt⟩ =
〈

Ψrr × Ψt + Ψr × Ψtr

|Ψr × Ψt|
, Ψt

〉
= −⟨Ψr × Ψtr, Ψt⟩

|Ψr × Ψt|

= −det(Ψt|Ψr|Ψtr)
|Ψr × Ψt|

= det(Ψtr|Ψr|Ψt)
|Ψr × Ψt|

= ⟨Ψtr, N⟩

The helicoid is the image of Ψ : R2 → R3 given by the parametrization

(r, t) 7→ (r cos t, r sin t, mt).

The tangent plane at a given point p = Ψ(r, t) ∈ R3 is spanned by Ψr(r, t) and
Ψt(r, t), which are

Ψr(r, t) = (cos t, sin t, 0) Ψt(r, t) = (−r sin t, r cos t, m).

So the normal vector to the surface is

N = Ψr × Ψt

|Ψr × Ψt|
= (m sin(t), −m cos(t), r)√

r2 + m2
.

To compute the 2nd fundamental form, we compute the second derivatives:

Ψrr(r, t) = (0, 0, 0)
Ψrt(r, t) = (− sin t, cos t, 0)
Ψtt(r, t) = (−r cos t, −r sin t, 0)
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Hence in the basis Ψr(r, t), Ψt(r, t) of TpM the 2nd fundamental form is(
⟨Ψrr, N⟩ ⟨Ψrt, N⟩
⟨Ψtr, N⟩ ⟨Ψtt, N⟩

)
=
(

0 −m√
r2+m2

−m√
r2+m2 0

)
.

We can not yet read the principal curvatures from this matrix, only in case the
matrix is with respect to an orthonormal basis. However, in our situation, Ψr

and Ψt are already orthogonal, and Ψr is normalized. With respect to the ONB
e1 = Ψr and e2 = Ψt

|Ψt| , the 2nd fundamental form is represented by matrix(
0 −m

r2+m2
−m

r2+m2 0

)
.

as both entries get scaled by 1
|Ψt| = 1√

r2+m2 .
Note that the entries on the diagonal are equal to the curvature of the helix

that we computed in sheet 2 exercise 1c. The curvatures are

H = tr(A) = 0,

K = det A = − m2

(r2 + m2)2 ,

−k1 = k2 = m

r2 + m2 .

3. Compact surfaces have positive K

Let M be a compact surface in R3. Prove that there is a point p in M such
that K(p) > 0.

Solution:
Let p ∈ M be the point in M with maximal Euclidean norm (exists as M is

compact). Then M is contained in a ball B of radius R = |p| centered at the
origin. Let S be the sphere of radius R centered at the origin (the boundary of
the ball). Note that also by definition of R that p ∈ S. Moreover, the tangent
space TpM at p is the same as TpS. Indeed, as p was the point in M with
maximal norm, in no direction in M the norm can increase. In other words, as
p is the point of maximal norm, it is in particular a critical point of the norm
function | · | : M → [0, ∞).

Moreover, as M is contained in the ball B and p ∈ S is on the boundary,
the curvature of curves in M going through p must at least curve as much as
curves in the sphere S at p to stay inside B. As the the normal of S and the
normal of M at p agree we have k1(p), k2(p) ≥ 1

R (or k1, k2 ≤ −1
R for outward

pointing normal). In any case,

K(p) = k1(p)k2(p) ≥ 1
R2 .
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4. Vanishing 2nd fundamental form implies planar surface

Suppose M is a connected surface in R3 with 2nd fundamental form A vanishing
everywhere. Show that M is contained in a plane.

Solution:
Let N be the normal to the surface M . We want to show that N is con-

stant. Equivalently, as M is connected, it is enough to show that the directional
derivative DXN(p) = 0 for each point p ∈ M and direction X ∈ TpM . Note
that DXN(p) ∈ TpM is a vector. To show that is zero, we test it against every
vector Y ∈ TpM . But using the formula from the lecture

⟨DXN(p), Y ⟩ = A(X, Y ) = 0,

we get the claim as A = 0 by assumption. This shows that the normal N(p) is
the same vector for all p, and hence M lies in a plane orthogonal to it.
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