Differential Geometry 1 Tom Ilmanen
D-MATH Fall 2023

Exercise Sheet 3
To be handed in until October 11

1. The Catenoid
Compute k1, ko, H and K for the catenoid.
Solution:
The catenoid is the surface of revolution for the generating curve y = f(z),

where f(x) = coshz. So we can apply the formulas derived in exercise 4 from
sheet 2. The derivatives of f are:

fz(z) = sinhz, foz = coshz
For p = (z,y, 2z) we get in the curve direction e, curvature

o) = foz(x) B cosh z 1
2P) = (14 f2(x))3/2 (1 +sinh®2)3/2  cosh’®x

since cosh? z — sinh? z = 1.
In the rotation direction ey we get curvature
-1 B -1 1
@1+ fol@)? cosh(z)y/1 + sinh? ~ cosh®z’
In the lecture, we have seen that for surfaces of revolution, e, and eg are the

principal directions. Hence k, and kg are the principal curvatures.
Therefore, as

ko(p) =

H=k,+ky=0,
the catenoid is a minimal surface. Its Gauss curvature is
-1

Kp) = cosh*z’

2. The Helicoid
Compute k1, ko, H and K for the helicoid.

Solution:
The helicoid is the image of ¥ : R — R3 given by the parametrization

(r,t) — (rcost,rsint, mt).
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Claim. Let us derive the formula for the 2nd fundamental form for a regu-
lar parametrization ¥ of a surface M. Regular here means that the vectors
U,.(r,t), ¥e(r,t) are linearly independent for all r,¢, so in particular span the
tangent space T,M at p = ¥(r,t). We claim that with respect to this basis the
2nd fundamental form is given by the following symmetric matrix

() o))

Proof. The normal vector at p € M is

The 2nd fundamental form is a bilinear form A : T,M x T,M — R. So it
is enough to know it for a basis of T, M. Recall from the lecture that for
X,Y € T,M we have A(X,Y) = —(DxN,Y). Let us apply this formula to the
basis U,., U,.

(W X Wy 4+ Wy X pp) (W X W) LW, X 0|
|\I/r><\11t| |\Ijr><\Ijt|2

D\I/TN - (N o \I’)T =

Analogeously we get a formula for Dy, N. Note that the ¥, x U, is orthogonal
to ¥, and to ¥, so the last term will cancel, once we take the scalar product
with ¥,. or W;. Indeed,

AW, U,)=—(Dgy N,V,) =

<\Ifm« X Wy + 0y X Wy >
U, x Wy T
(Wrp x Wy, U,
[T, x Uy
det (|0, .| P,)
T x|
det(wrrl\llrllllt)
U, x 0y
(U, Uy % 0,
[W, x U,
= (¥, N)
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) v, + ¥ )
A(\I,tvlpt):_<D\I’tNa\I/t>:_< rt X t+ X tt7\IJt>

|\I/7~ X \I’t|
(U, x Wy, Uy)
|\IJ7~ X \I/t|
_ _det(\I/t|\I/7.\‘1/tt)
|\I/T X \I/t|

_ det(Wy |V, [Ty)
|\II7‘ X \Ilt‘

_ det(\lltt‘\llrllpt)
|\I/7» X \Ijt‘

== <\IItt7N>

A(qjﬁqjt) = 7<D\I/TN5 \I/f> = < |\IJ % \I/t|

(U, x Uy, U
[W, x Uy
det(T, |, |T,,.)

U, X 0y
det (U, |, | Wy)

T, x Oy

= <‘I’tr,N>

W, X Uy + U, x Uy,
x U, + X t,\1/f>

The helicoid is the image of ¥ : R? — R3 given by the parametrization
(ryt) — (rcost,rsint, mt).
The tangent plane at a given point p = ¥(r,t) € R? is spanned by W,.(r,t) and
U, (r,t), which are
U,.(r,t) = (cost,sint,0) U,(r,t) = (—rsint, rcost,m).
So the normal vector to the surface is
N— U, xW;  (msin(t), —mcos(t),r)
[W, x Uy V12 +m?2 .
To compute the 2nd fundamental form, we compute the second derivatives:
V,..(r,t) = (0,0,0)
U,(r,t) = (—sint, cost,0)
Uy (r,t) = (—rcost, —rsint,0)
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Hence in the basis W, (r,t), ¥,(r,t) of T, M the 2nd fundamental form is

<<\IJTT7N> <\I/rtaN>) — 0 ‘/Tgrmffz
(Ui, N) (W4, V) ﬁ 0

We can not yet read the principal curvatures from this matrix, only in case the
matrix is with respect to an orthonormal basis. However, in our situation, W,
and ¥, are already orthogonal, and ¥, is normalized. With respect to the ONB
e;1 =V, and ey = I‘%ijl’ the 2nd fundamental form is represented by matrix

( 0 72+7ZL2)
7m0
as both entries get scaled by ﬁ = ﬁ
Note that the entries on the diagonal are equal to the curvature of the helix

that we computed in sheet 2 exercise 1c. The curvatures are

H=1tr(A) =0,
2
m
K=—detA=—— " _
€ (2 + m2)2’
m
h=k=Gr

3. Compact surfaces have positive K

Let M be a compact surface in R3. Prove that there is a point p in M such
that K(p) > 0.

Solution:

Let p € M be the point in M with maximal Euclidean norm (exists as M is
compact). Then M is contained in a ball B of radius R = |p| centered at the
origin. Let S be the sphere of radius R centered at the origin (the boundary of
the ball). Note that also by definition of R that p € S. Moreover, the tangent
space T,M at p is the same as T,S. Indeed, as p was the point in M with
maximal norm, in no direction in M the norm can increase. In other words, as
p is the point of maximal norm, it is in particular a critical point of the norm
function |- |: M — [0, 00).

Moreover, as M is contained in the ball B and p € S is on the boundary,
the curvature of curves in M going through p must at least curve as much as
curves in the sphere S at p to stay inside B. As the the normal of S and the
normal of M at p agree we have ki(p), k2(p) >  (or k1, k2 < 5 for outward
pointing normal). In any case,

1

K(p) = ki1(p)k2(p) > ik
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4. Vanishing 2nd fundamental form implies planar surface

Suppose M is a connected surface in R? with 2nd fundamental form A vanishing
everywhere. Show that M is contained in a plane.

Solution:

Let N be the normal to the surface M. We want to show that N is con-
stant. Equivalently, as M is connected, it is enough to show that the directional
derivative Dx N(p) = 0 for each point p € M and direction X € T,M. Note
that DxN(p) € T, M is a vector. To show that is zero, we test it against every
vector Y € T, M. But using the formula from the lecture

<DXN(p)>Y> = A(Xv Y) =0,

we get the claim as A = 0 by assumption. This shows that the normal N (p) is
the same vector for all p, and hence M lies in a plane orthogonal to it.




