Differential Geometry 1 Tom Ilmanen
D-MATH Fall 2023

Exercise Sheet 4
To be handed in until October 18

1. Helicoid and catenoid are locally isometric

(a) Find a local isometry

@ : helicoid — catenoid .

(b) Verify that ¢ preserves K. What does it do to the principle curvatures
and principle directions?

(c*) Show that there is a continuous family of minimal surfaces deforming the
helicoid into the catenoid.

Solution:

(a) Leta € R. Define the following two parametrizations W@ WHa . J — R3
where
Wy, v) = (acoshucos v, acoshusin v, au)
W (4, v) = (asinhucos v, asinh usin v, av)
for U = {(u,v) € R?| — 7 < y < w}. Note that ¥ is a parametrization
of a catenoid as the surface of revolution of the curve x ~ acosh Z (for

a # 0) around the z-axis. On the other hand, ¥¢ is a parametrization of
a helicoid.

To compare the two parametrizations, let’s compute how they depend on
the parameters u, v:

U = (g sinhu cos v, asinh usinwv, a)

U = (—q coshusinv, acosh ucoswv,0)
\Iff’a = (acoshu cos v, acoshusinwv,0)
ghe — (—gsinhusinv, asinhu cos v, a)

The first fundamental form of the catenoid in the basis ¥$® and ¥ is
given by

( (W ? (WSe wCay\  (a?(sinh®u + 1) 0
< - .

gla yla) |@Cha|? 0 a2 cosh? u
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The first fundamental form of the helicoid in the basis W@ and Wie is
given by

wile (e W) (a? coshu 0
(e vty el )T 00 aXsinh’u+ 1))

Since sinh? u + 1 = cosh? u the two parametrizations have the same first
fundamental form, hence

¢ := W9 o (FH4) =1 : helicoid — catenoid
defines a local isometry for each a.

(b) To get the curvatures we need to compute the 2nd fundamental forms and
the normals. Let us compute the second derivatives.

¥ — (g coshucosv,acoshusinw,0)

W& — (—asinhusinv, asinhucos v, 0)

W& — (—qcoshucosv, —acoshusinwv, 0)
H,a __ . . o -

U = (asinhu cosv, asinh usin v, 0)

WHa — (_gcoshusinwv,acoshucoswv,0)

Uhae — (_gsinhucosv, —asinhusinv, a).

The normal is

ca VOl (—q?coshucosv, —a? coshusin v, a? sinh u cosh )
- C,a C,a
(W[ Wy

a? cosh? u

(= cos v, — sin v, sinh )

coshu

for the catenoid and

Ha _ Yiha o yha _ (a? cosh u sin v, —a? cosh plu cos v, a® cosh u sinh u)

e wlte a2 cosh’ u

(sinw, — cos v, sinh u)

coshu
for the helicoid.

As |UGa| = |UE54| = qcoshu and using the argument from sheet 3 exercise
2, the formula for second fundamental form of the catenoid with respect

Lo o wde
to the orthonormal basis I‘I'UT“\’ W is

1<<‘1151;“7N> <\I’5;,“,N>>
a? cosh? u <‘I’C’a N) <‘I/C’a N)

vu !

B 1 <—a 0)
a?cosh®?u \ 0 a)’

vU )
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So taking the trace we get H%® = 0 and taking the determinant we get

R
a2 cosh* u
Similarly as [W:¢| = |WH¢| = gcoshu the second fundamental form of

Ha gHa
U

the helicoid with respect to the basis %, Tpfra is

1 (0 —a)
a?cosh?u \—a 0 )~

So Hf:@ = () and

1
Hya _ _
K7 = 5 —
a®cosh™u
. _ 1 o 1 . . .
Hence in both cases k1 = — 45, k2 = 575~ The principal directions
for the catenoid are
C, C,
C,a _ \Iju “ C,a __ \IIU @
O C,a,’ 2 = C,a
W W

whereas the principal directions for the helicoid are

H,a H,a
\Iju \I}v

v e

rotated by 7/2.

(c) A regular conformal parametrization is a parametrization ¥ : U C R? —
R3 such that the two directional derivatives ¥,,, ¥, satisfy:

|, =|T,|#0 and v, Lw,.
Claim. (i) Suppose ¥ is a regular conformal parametrization. Then
U(U) is minimal iff ¥,,, + ¥,, = 0.
(ii) Suppose WC, ¥H . U — R3 are conformal regular parametrizations
and
Ll vl Ll and (WL W) = (W 0.
Then
Ul (u,v) = cost U (u,v) + sint U (u, v)
is a regular conformal parametrization for every t € R.

(iii) In the setting of (ii) and if ¥¢ and W# both define minimal surfaces
prove that also ! parametrizes a minimal surface for every t.
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Proof. (i) By assumption ¥, (u,v) and ¥, (u,v) are an orthogonal basis
of T, M for p = ¥(u,v). As in exercise 2 sheet 3 we know that the 2nd
fundamental form in orthonormal coordinates e; = ‘g—;"‘, ey = |$Z| is

represented by the symmetric matrix

(Yuu,N) (Yoo, N)
|92 [V |
(‘I"uu7N> (‘I’vv7N>

(Vo |[ W | Wy [?

where N = e; X e5. The mean curvature is the trace of this matrix:

Vyu, N) | (Wou, N)

(
H =
W [? Wy |2

As |U,| = |¥,| we conclude that H = 0 iff (U, + ¥,,, N) = 0.
To get the claimed statement, we need to prove that ¥,,, + ¥, is
parallel to N, i.e. orthogonal to both ¥, and ¥,. Indeed: Taking
the derivatives of

(U, Uy) = (U, 0,) (U, ¥,) =0,
we get equations
<\I}uu; \Iju> = <\Ijuv7 \Ijv> = _<\Ijua \Ijvv>~

So (Uyy + Wy, ¥y) = 0. Similarly (¥, + Py, ¥,) = 0.

(ii) The directional derivatives are
C g H
Ul = cost UC +sint UH
C H
V! = cost WS +sint Ul
So we get

| W 2 = cos? t| WS |2 + 2sint cos t (U, WHY) 4 sin? | wH |2

= cos® t|US|? + 2sint cos t (S, WH) 4 sin | T2 = | 0! |2
and
(W, 0h) = cos® (TS, U ) +sint cost (U5, W) + (WH T§)) +sin? ¢(VE, 0l = 0.
(iii) Using the characterization of minimal surfaces from (i) twice we get

C ot wH C L ownpuH
Ul + 0! =cost VS, +sint Ul + cost US +sint U

vV

= cost(WS, + UC ) +sint(T2 + ¥y =0,

and hence ¥ parametrizes a minimal surface.
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We see that ¥ and ¥ conformal regular parametrizations for each
a. Moreover, 5@ | WH.a and ¢§e | gha,

As the catenoid and the helicoid are minimal surfaces we found a 2-
parameter family of minimal surface given as the image of ¥®?.

2. More on isometries

A local isometry between surfaces in R? preserves the Gauss curvature K but
normally not k1, ko, H, or the principal directions of curvature. So the situation
in exercise 1 was special in this respect.

(a) Compute K, k1, ko, H of a cone.
(b) Show that the cone (minus the vertex) is locally isometric to the plane.

(c) Is there a global isometry between the cone (minus the vertex) and the
plane minus a point?

Solution:

(a) Let 2¢ be the angle of the cone at the vertex. That is the cone is the
surface of revolution for the curve y = f(z) = ztan¢. As f, = tan¢
and fp, = 0 we get using the formulas from exercise 4 sheet 2 that the
principal curvatures are:

T e
. -1 _ -1
f(@)/1+ fo(2)2 ztangy/1 + tan ¢?
—cos ¢ —cos? ¢

o . cos? ¢+sin? o T sin ’
wsin gy [ LETE ¢

So K =0 and H = ky.

(b) The cone with angle 2¢ at the vertex can be obtained by folding a sector
of the disk of angle 27 sin ¢ along the two straight segments. Denote U =
{(u,v) € R?|u € (0,00),—msing < v < mwsing}. The relevant sector of
the disk is the image of ¥ : U — R3 given by (u,v) + (ucosv,usinv, 0).
The first fundamental form in the basis W2 and ¥ is given by

WS (WS, W) _ (1 0
(S, wS) TS 0 uz)

u?
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The cone is the image of the map ¥¢ : U — R3 given by

(u,v) <ucos¢,usin¢cos <S1111}¢>) , usin ¢ sin <Sizq§)> .

The tangent vectors for the cone W€ (U) in the parametrization directions

are
U (u,v) = (Cosgi), sin ¢ cos <U> 7sin(zbsin( .v >>
sin ¢ sin
C - . . v v
U (u,v) = (()7 u sin (sin¢> , U COS <sin¢)>
The first fundamental form in the basis ¥,, and ¥, is given by
|v, |2 (T, T)y (1 O
(U, Uy) |w,|? —\0 w?)

As the representations of the first fundamental form agree, the two surfaces
are locally isometric by the map

¢ :=0%0 (\IIC)_1 : cone — subset of the plane.

(c) There is no global isometry. Otherwise, there would also be a global
isometry from the plane to the cone (we can just add back the deleted
point and define the distance to this point as the Euclidean distance in
R3. A global isometry needs to extend. The points of distance 1 from the
vertex in the cone and the points of distance 1 from the origin in the plane
should get mapped onto each other by a global isometry. Both are a curve
(a circle) but they do not have the same length. So no global isometry
can exist.

3. The Pseudosphere

The pseudosphere is the surface of revolution for the curve v : R — R? parametrized
by
t — (t — tanht, secht),

sinh t
cosht

_1
cosht"’

and secht = Compute K for the pseudosphere.

where tanht =

Solution:
The curve v is defined by a parametrization, not explicitly as y = f(x)
as in the formulas derived in exercise 4 from sheet 2. We still can compute
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the necessary derivatives without solving explicitly for the y-coordinate. Let
x(t) =t — tanht and y(t) = secht. Note that

P dy dydt .
2TV T e T dtde -
Using % tanht = 1 — cosh® t we get
1 1 cosh?t — 1 sinh? ¢ sinh ¢
T+ = — = = = —-—
¢ cosh?t cosh? ¢ cosh?t’ ot cosh? ¢
We get the reversed derivatives
p 1 _coshzt . I cosh? ¢
“xy sinh’t’ Yy,  sinht’
This now lets us compute the derivative
ot — sinht cosh?t _ 1
Yo = ttta = cosh®t sinh?t  sinht’

and also the second derivative

cosht cosh?t cosh® ¢

— t, = = .
Yo = (ya)ite sinh? ¢ sinh? ¢ sinh* ¢

Using

(1+42)% = <1+ 1 )2 (sinh%—f—l)2 _ <cosh2t>2 cosh® t

sinh? ¢ sinh? ¢ sinh? ¢ sinh®* ¢

in the formula for the Gauss curvature K that we derived in sheet 2 exercise 4
we get

Yoz cosh®t 1 sinh*¢
K=~ T+ 22 winhis 1 -, =L
y(1+y2) sinh® ¢ 5 cosh™ ¢

So the pseudosphere is of constant negative Gauss curvature —1. That is why
it deserves the name pseudosphere in contrast to the sphere which has constant
positive curvature 1.

4. Shortest path in R™

Prove that a straight line in R™ is the shortest path between two given points.

Solution:
As rotation and translation do not change the distance of two points, it is
enough to show the claim for two points that have coordinates p = (x,0,--- ,0)
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and p = (Z,0,---,0) in R™. Also assume x < Z. The length of a straight line
connecting these two points is £ — z. So we want to show that any curve in R™
connecting these two points has at least length & — x. Let v be an arbitrary
curve with v(0) = p,y(1) = p. Write v(t) = (v1(t),...,7"(t)). Then

1 1 1
length(y) = / ()] dt > / i ()] dt > / 2t dt = 7 — .
0 0 0




