Exercise Sheet 4

To be handed in until October 18

1. Helicoid and catenoid are locally isometric

(a) Find a local isometry

$$
\varphi: \text { helicoid } \rightarrow \text { catenoid }
$$

(b) Verify that φ preserves K. What does it do to the principle curvatures and principle directions?
(c*) Show that there is a continuous family of minimal surfaces deforming the helicoid into the catenoid.

Solution:

(a) Let $a \in \mathbb{R}$. Define the following two parametrizations $\Psi^{C, a}, \Psi^{H, a}: U \rightarrow \mathbb{R}^{3}$ where

$$
\begin{aligned}
& \Psi^{C, a}(u, v)=(a \cosh u \cos v, a \cosh u \sin v, a u) \\
& \Psi^{H, a}(u, v)=(a \sinh u \cos v, a \sinh u \sin v, a v)
\end{aligned}
$$

for $U=\left\{(u, v) \in \mathbb{R}^{2} \mid-\pi<y<\pi\right\}$. Note that Ψ_{a}^{C} is a parametrization of a catenoid as the surface of revolution of the curve $x \mapsto a \cosh \frac{x}{a}$ (for $a \neq 0)$ around the z-axis. On the other hand, Ψ_{a}^{C} is a parametrization of a helicoid.
To compare the two parametrizations, let's compute how they depend on the parameters u, v :

$$
\begin{aligned}
& \Psi_{u}^{C, a}=(a \sinh u \cos v, a \sinh u \sin v, a) \\
& \Psi_{v}^{C, a}=(-a \cosh u \sin v, a \cosh u \cos v, 0) \\
& \Psi_{u}^{H, a}=(a \cosh u \cos v, a \cosh u \sin v, 0) \\
& \Psi_{v}^{H, a}=(-a \sinh u \sin v, a \sinh u \cos v, a)
\end{aligned}
$$

The first fundamental form of the catenoid in the basis $\Psi_{u}^{C, a}$ and $\Psi_{v}^{C, a}$ is given by

$$
\left(\begin{array}{cc}
\left|\Psi_{u}^{C, a}\right|^{2} & \left\langle\Psi_{u}^{C, a}, \Psi_{v}^{C, a}\right\rangle \\
\left\langle\Psi_{u}^{C, a}, \Psi_{v}^{C, a}\right\rangle & \left|\Psi_{v}^{C, a}\right|^{2}
\end{array}\right)=\left(\begin{array}{cc}
a^{2}\left(\sinh ^{2} u+1\right) & 0 \\
0 & a^{2} \cosh ^{2} u
\end{array}\right)
$$

The first fundamental form of the helicoid in the basis $\Psi_{u}^{H, a}$ and $\Psi_{v}^{H, a}$ is given by

$$
\left(\begin{array}{cc}
\left|\Psi_{u}^{H, a}\right|^{2} & \left\langle\Psi_{u}^{H, a}, \Psi_{v}^{H, a}\right\rangle \\
\left\langle\Psi_{u}^{H, a}, \Psi_{v}^{H, a}\right\rangle & \left|\Psi_{v}^{H, a}\right|^{2}
\end{array}\right)=\left(\begin{array}{cc}
a^{2} \cosh ^{2} u & 0 \\
0 & a^{2}\left(\sinh ^{2} u+1\right)
\end{array}\right) .
$$

Since $\sinh ^{2} u+1=\cosh ^{2} u$ the two parametrizations have the same first fundamental form, hence

$$
\phi:=\Psi^{C, a} \circ\left(\Psi^{H, a}\right)^{-1}: \text { helicoid } \rightarrow \text { catenoid }
$$

defines a local isometry for each a.
(b) To get the curvatures we need to compute the 2 nd fundamental forms and the normals. Let us compute the second derivatives.

$$
\begin{aligned}
& \Psi_{u u}^{C, a}=(a \cosh u \cos v, a \cosh u \sin v, 0) \\
& \Psi_{u v}^{C, a}=(-a \sinh u \sin v, a \sinh u \cos v, 0) \\
& \Psi_{v v}^{C, a}=(-a \cosh u \cos v,-a \cosh u \sin v, 0) \\
& \Psi_{u u}^{H, a}=(a \sinh u \cos v, a \sinh u \sin v, 0) \\
& \Psi_{u v}^{H, a}=(-a \cosh u \sin v, a \cosh u \cos v, 0) \\
& \Psi_{v v}^{H, a}=(-a \sinh u \cos v,-a \sinh u \sin v, a) .
\end{aligned}
$$

The normal is

$$
\begin{aligned}
N^{C, a}=\frac{\Psi_{u}^{C, a} \times \Psi_{v}^{C, a}}{\left|\Psi_{u}^{C, a}\right|\left|\Psi_{v}^{C, a}\right|} & =\frac{\left(-a^{2} \cosh u \cos v,-a^{2} \cosh u \sin v, a^{2} \sinh u \cosh u\right)}{a^{2} \cosh ^{2} u} \\
& =\frac{(-\cos v,-\sin v, \sinh u)}{\cosh u}
\end{aligned}
$$

for the catenoid and

$$
\begin{aligned}
N^{H, a}=\frac{\Psi_{u}^{H, a} \times \Psi_{v}^{H, a}}{\left|\Psi_{u}^{H, a}\right|\left|\Psi_{v}^{H, a}\right|} & =\frac{\left(a^{2} \cosh u \sin v,-a^{2} \cosh p\left[u \cos v, a^{2} \cosh u \sinh u\right)\right.}{a^{2} \cosh ^{2} u} \\
& =\frac{(\sin v,-\cos v, \sinh u)}{\cosh u}
\end{aligned}
$$

for the helicoid.
As $\left|\Psi_{u}^{C, a}\right|=\left|\Psi_{v}^{C, a}\right|=a \cosh u$ and using the argument from sheet 3 exercise 2 , the formula for second fundamental form of the catenoid with respect to the orthonormal basis $\frac{\Psi_{u}^{C, a}}{\left|\Psi_{u}^{C, a}\right|}, \frac{\Psi_{v}^{C, a}}{\left|\Psi_{v}^{C, a}\right|}$ is

$$
\begin{aligned}
\frac{1}{a^{2} \cosh ^{2} u} & \left(\begin{array}{ll}
\left\langle\Psi_{u u}^{C, a}, N\right\rangle & \left\langle\Psi_{u v}^{C, a}, N\right\rangle \\
\left\langle\Psi_{v u}^{C, a}, N\right\rangle & \left\langle\Psi_{v v}^{C, a}, N\right\rangle
\end{array}\right) \\
& =\frac{1}{a^{2} \cosh ^{2} u}\left(\begin{array}{cc}
-a & 0 \\
0 & a
\end{array}\right) .
\end{aligned}
$$

So taking the trace we get $H^{C, a}=0$ and taking the determinant we get

$$
K^{C, a}=-\frac{1}{a^{2} \cosh ^{4} u} .
$$

Similarly as $\left|\Psi_{u}^{H, a}\right|=\left|\Psi_{v}^{H, a}\right|=a \cosh u$ the second fundamental form of the helicoid with respect to the basis $\frac{\Psi_{u}^{H, a}}{\left|\Psi_{u}^{H, a}\right|}, \frac{\Psi_{v}^{H, a}}{\left|\Psi_{v}^{H, a}\right|}$ is

$$
\frac{1}{a^{2} \cosh ^{2} u}\left(\begin{array}{cc}
0 & -a \\
-a & 0
\end{array}\right)
$$

So $H^{H, a}=0$ and

$$
K^{H, a}=-\frac{1}{a^{2} \cosh ^{4} u}
$$

Hence in both cases $k_{1}=-\frac{1}{a \cosh ^{2} u}, k_{2}=\frac{1}{a \cosh ^{2} u}$. The principal directions for the catenoid are

$$
e_{1}^{C, a}=\frac{\Psi_{u}^{C, a}}{\left|\Psi_{u}^{C, a}\right|}, \quad e_{2}^{C, a}=\frac{\Psi_{v}^{C, a}}{\left|\Psi_{v}^{C, a}\right|}
$$

whereas the principal directions for the helicoid are

$$
\frac{\Psi_{u}^{H, a}}{\left|\Psi_{u}^{H, a}\right|}, \quad \frac{\Psi_{v}^{H, a}}{\left|\Psi_{v}^{H, a}\right|}
$$

rotated by $\pi / 2$.
(c) A regular conformal parametrization is a parametrization $\Psi: U \subset \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{3} such that the two directional derivatives Ψ_{u}, Ψ_{v} satisfy:

$$
\left|\Psi_{u}\right|=\left|\Psi_{v}\right| \neq 0 \quad \text { and } \quad \Psi_{u} \perp \Psi_{v}
$$

Claim. (i) Suppose Ψ is a regular conformal parametrization. Then $\Psi(U)$ is minimal iff $\Psi_{u u}+\Psi_{v v}=0$.
(ii) Suppose $\Psi^{C}, \Psi^{H}: U \rightarrow \mathbb{R}^{3}$ are conformal regular parametrizations and

$$
\Psi_{u}^{C} \perp \Psi_{v}^{H}, \quad \Psi_{u}^{H} \perp \Psi_{v}^{C} \quad \text { and } \quad\left\langle\Psi_{u}^{C}, \Psi_{u}^{H}\right\rangle=\left\langle\Psi_{v}^{C}, \Psi_{v}^{H}\right\rangle
$$

Then

$$
\Psi^{t}(u, v)=\cos t \Psi^{C}(u, v)+\sin t \Psi^{H}(u, v)
$$

is a regular conformal parametrization for every $t \in \mathbb{R}$.
(iii) In the setting of (ii) and if Ψ^{C} and Ψ^{H} both define minimal surfaces prove that also Ψ^{t} parametrizes a minimal surface for every t.

Proof. (i) By assumption $\Psi_{u}(u, v)$ and $\Psi_{u}(u, v)$ are an orthogonal basis of $T_{p} M$ for $p=\Psi(u, v)$. As in exercise 2 sheet 3 we know that the 2 nd fundamental form in orthonormal coordinates $e_{1}=\frac{\Psi_{u}}{\mid \Psi_{u}}, e_{2}=\frac{\Psi_{v}}{\left|\Psi_{v}\right|}$ is represented by the symmetric matrix

$$
\left(\begin{array}{ll}
\frac{\left\langle\Psi_{u u}, N\right\rangle}{\mid \Psi_{u} u^{2}} & \frac{\left\langle\Psi_{u v}, N\right\rangle}{\left|\Psi_{u}\right|\left|\Psi_{v}\right|} \\
\frac{\left\langle\Psi_{v u}, N\right\rangle}{\left|\Psi_{u}\right|\left|\Psi_{v}\right|} & \frac{\left\langle\Psi_{v v}, N\right\rangle}{\left|\Psi_{v}\right|^{2}}
\end{array}\right)
$$

where $N=e_{1} \times e_{2}$. The mean curvature is the trace of this matrix:

$$
H=\frac{\left\langle\Psi_{u u}, N\right\rangle}{\left|\Psi_{u}\right|^{2}}+\frac{\left\langle\Psi_{v v}, N\right\rangle}{\left|\Psi_{v}\right|^{2}} .
$$

As $\left|\Psi_{u}\right|=\left|\Psi_{v}\right|$ we conclude that $H=0$ iff $\left\langle\Psi_{u u}+\Psi_{v v}, N\right\rangle=0$. To get the claimed statement, we need to prove that $\Psi_{u u}+\Psi_{v v}$ is parallel to N, i.e. orthogonal to both Ψ_{u} and Ψ_{v}. Indeed: Taking the derivatives of

$$
\left\langle\Psi_{u}, \Psi_{u}\right\rangle=\left\langle\Psi_{v}, \Psi_{v}\right\rangle \quad\left\langle\Psi_{u}, \Psi_{v}\right\rangle=0,
$$

we get equations

$$
\left\langle\Psi_{u u}, \Psi_{u}\right\rangle=\left\langle\Psi_{u v}, \Psi_{v}\right\rangle=-\left\langle\Psi_{u}, \Psi_{v v}\right\rangle .
$$

So $\left\langle\Psi_{u u}+\Psi_{v v}, \Psi_{u}\right\rangle=0$. Similarly $\left\langle\Psi_{u u}+\Psi_{v v}, \Psi_{v}\right\rangle=0$.
(ii) The directional derivatives are

$$
\begin{aligned}
\Psi_{u}^{t} & =\cos t \Psi_{u}^{C}+\sin t \Psi_{u}^{H} \\
\Psi_{v}^{t} & =\cos t \Psi_{v}^{C}+\sin t \Psi_{v}^{H}
\end{aligned}
$$

So we get

$$
\begin{aligned}
\left|\Psi_{u}^{t}\right|^{2} & =\cos ^{2} t\left|\Psi_{u}^{C}\right|^{2}+2 \sin t \cos t\left\langle\Psi_{u}^{C}, \Psi_{u}^{H}\right\rangle+\sin ^{2} t\left|\Psi_{u}^{H}\right|^{2} \\
& =\cos ^{2} t\left|\Psi_{v}^{C}\right|^{2}+2 \sin t \cos t\left\langle\Psi_{v}^{C}, \Psi_{v}^{H}\right\rangle+\sin ^{2} t\left|\Psi_{v}^{H}\right|^{2}=\left|\Psi_{v}^{t}\right|^{2}
\end{aligned}
$$

and

$$
\left\langle\Psi_{u}^{t}, \Psi_{v}^{t}\right\rangle=\cos ^{2} t\left\langle\Psi_{u}^{C}, \Psi_{v}^{C}\right\rangle+\sin t \cos t\left(\left\langle\Psi_{u}^{C}, \Psi_{v}^{H}\right\rangle+\left\langle\Psi_{u}^{H}, \Psi_{v}^{C}\right\rangle\right)+\sin ^{2} t\left\langle\Psi_{u}^{H}, \Psi_{v}^{H}\right\rangle=0
$$

(iii) Using the characterization of minimal surfaces from (i) twice we get

$$
\begin{aligned}
\Psi_{u u}^{t}+\Psi_{v v}^{t} & =\cos t \Psi_{u u}^{C}+\sin t \Psi_{u u}^{H}+\cos t \Psi_{v v}^{C}+\sin t \Psi_{v v}^{H} \\
& =\cos t\left(\Psi_{u u}^{C}+\Psi_{v v}^{C}\right)+\sin t\left(\Psi_{u u}^{H}+\Psi_{v v}^{H}\right)=0
\end{aligned}
$$

and hence Ψ^{t} parametrizes a minimal surface.

We see that $\Psi^{C, a}$ and $\Psi^{C, a}$ conformal regular parametrizations for each a. Moreover, $\Psi_{u}^{C, a} \perp \Psi_{v}^{H, a}$ and $\Psi_{v}^{C, a} \perp \Psi_{u}^{H, a}$.

As the catenoid and the helicoid are minimal surfaces we found a 2 parameter family of minimal surface given as the image of $\Psi^{a, t}$.

2. More on isometries

A local isometry between surfaces in \mathbb{R}^{3} preserves the Gauss curvature K but normally not k_{1}, k_{2}, H, or the principal directions of curvature. So the situation in exercise 1 was special in this respect.
(a) Compute K, k_{1}, k_{2}, H of a cone.
(b) Show that the cone (minus the vertex) is locally isometric to the plane.
(c) Is there a global isometry between the cone (minus the vertex) and the plane minus a point?

Solution:

(a) Let 2ϕ be the angle of the cone at the vertex. That is the cone is the surface of revolution for the curve $y=f(x)=x \tan \phi$. As $f_{x}=\tan \phi$ and $f_{x x}=0$ we get using the formulas from exercise 4 sheet 2 that the principal curvatures are:

$$
\begin{aligned}
k_{x} & =\frac{f_{x x}(x)}{\left(1+f_{x}^{2}(x)\right)^{3 / 2}}=0 \\
k_{\theta} & =\frac{-1}{f(x) \sqrt{1+f_{x}(x)^{2}}}=\frac{-1}{x \tan \phi \sqrt{1+\tan \phi^{2}}} \\
& =\frac{-\cos \phi}{x \sin \phi \sqrt{\frac{\cos ^{2} \phi+\sin ^{2} \phi}{\cos ^{2} \phi}}}=\frac{-\cos ^{2} \phi}{x \sin \phi} .
\end{aligned}
$$

So $K=0$ and $H=k_{\theta}$.
(b) The cone with angle 2ϕ at the vertex can be obtained by folding a sector of the disk of angle $2 \pi \sin \phi$ along the two straight segments. Denote $U=$ $\left\{(u, v) \in \mathbb{R}^{2} \mid u \in(0, \infty),-\pi \sin \phi<v \leq \pi \sin \phi\right\}$. The relevant sector of the disk is the image of $\Psi^{S}: U \rightarrow \mathbb{R}^{3}$ given by $(u, v) \mapsto(u \cos v, u \sin v, 0)$. The first fundamental form in the basis Ψ_{u}^{S} and Ψ_{v}^{S} is given by

$$
\left(\begin{array}{cc}
\left|\Psi_{u}^{S}\right|^{2} & \left\langle\Psi_{u}^{S}, \Psi_{v}^{S}\right\rangle \\
\left\langle\Psi_{u}^{S}, \Psi_{v}^{S}\right\rangle & \left|\Psi_{v}^{S}\right|^{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & u^{2}
\end{array}\right) .
$$

The cone is the image of the map $\Psi^{C}: U \rightarrow \mathbb{R}^{3}$ given by

$$
(u, v) \mapsto\left(u \cos \phi, u \sin \phi \cos \left(\frac{v}{\sin \phi}\right), u \sin \phi \sin \left(\frac{v}{\sin \phi}\right)\right)
$$

The tangent vectors for the cone $\Psi^{C}(U)$ in the parametrization directions are

$$
\begin{aligned}
\Psi_{u}^{C}(u, v) & =\left(\cos \phi, \sin \phi \cos \left(\frac{v}{\sin \phi}\right), \sin \phi \sin \left(\frac{v}{\sin \phi}\right)\right) \\
\Psi_{v}^{C}(u, v) & =\left(0,-u \sin \left(\frac{v}{\sin \phi}\right), u \cos \left(\frac{v}{\sin \phi}\right)\right)
\end{aligned}
$$

The first fundamental form in the basis Ψ_{u} and Ψ_{v} is given by

$$
\left(\begin{array}{cc}
\left|\Psi_{u}\right|^{2} & \left\langle\Psi_{u}, \Psi_{v}\right\rangle \\
\left\langle\Psi_{u}, \Psi_{v}\right\rangle & \left|\Psi_{v}\right|^{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & u^{2}
\end{array}\right) .
$$

As the representations of the first fundamental form agree, the two surfaces are locally isometric by the map

$$
\phi:=\Psi^{S} \circ\left(\Psi^{C}\right)^{-1}: \text { cone } \rightarrow \text { subset of the plane. }
$$

(c) There is no global isometry. Otherwise, there would also be a global isometry from the plane to the cone (we can just add back the deleted point and define the distance to this point as the Euclidean distance in \mathbb{R}^{3}. A global isometry needs to extend. The points of distance 1 from the vertex in the cone and the points of distance 1 from the origin in the plane should get mapped onto each other by a global isometry. Both are a curve (a circle) but they do not have the same length. So no global isometry can exist.

3. The Pseudosphere

The pseudosphere is the surface of revolution for the curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ parametrized by

$$
t \mapsto(t-\tanh t, \operatorname{sech} t)
$$

where $\tanh t=\frac{\sinh t}{\cosh t}$ and $\operatorname{sech} t=\frac{1}{\cosh t}$. Compute K for the pseudosphere.

Solution:

The curve γ is defined by a parametrization, not explicitly as $y=f(x)$ as in the formulas derived in exercise 4 from sheet 2 . We still can compute
the necessary derivatives without solving explicitly for the y-coordinate. Let $x(t)=t-\tanh t$ and $y(t)=\operatorname{sech} t$. Note that

$$
f_{x}=y_{x}=\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=y_{t} t_{x}
$$

Using $\frac{d}{d t} \tanh t=1-\cosh ^{2} t$ we get

$$
x_{t}=1-\frac{1}{\cosh ^{2} t}=\frac{\cosh ^{2} t-1}{\cosh ^{2} t}=\frac{\sinh ^{2} t}{\cosh ^{2} t}, \quad y_{t}=-\frac{\sinh t}{\cosh ^{2} t}
$$

We get the reversed derivatives

$$
t_{x}=\frac{1}{x_{t}}=\frac{\cosh ^{2} t}{\sinh ^{2} t}, \quad t_{y}=\frac{1}{y_{t}}=-\frac{\cosh ^{2} t}{\sinh t}
$$

This now lets us compute the derivative

$$
y_{x}=y_{t} t_{x}=-\frac{\sinh t}{\cosh ^{2} t} \frac{\cosh ^{2} t}{\sinh ^{2} t}=-\frac{1}{\sinh t}
$$

and also the second derivative

$$
y_{x x}=\left(y_{x}\right)_{t} t_{x}=\frac{\cosh t}{\sinh ^{2} t} \frac{\cosh ^{2} t}{\sinh ^{2} t}=\frac{\cosh ^{3} t}{\sinh ^{4} t}
$$

Using

$$
\left(1+y_{x}^{2}\right)^{2}=\left(1+\frac{1}{\sinh ^{2} t}\right)^{2}=\left(\frac{\sinh ^{2} t+1}{\sinh ^{2} t}\right)^{2}=\left(\frac{\cosh ^{2} t}{\sinh ^{2} t}\right)^{2}=\frac{\cosh ^{4} t}{\sinh ^{4} t}
$$

in the formula for the Gauss curvature K that we derived in sheet 2 exercise 4 we get

$$
K=-\frac{y_{x x}}{y\left(1+y_{x}^{2}\right)^{2}}=-\frac{\cosh ^{3} t}{\sinh ^{4} t} \frac{1}{\frac{1}{\cosh t}} \frac{\sinh ^{4} t}{\cosh ^{4} t}=-1
$$

So the pseudosphere is of constant negative Gauss curvature -1 . That is why it deserves the name pseudosphere in contrast to the sphere which has constant positive curvature 1 .

4. Shortest path in \mathbb{R}^{n}

Prove that a straight line in \mathbb{R}^{n} is the shortest path between two given points.

Solution:

As rotation and translation do not change the distance of two points, it is enough to show the claim for two points that have coordinates $p=(x, 0, \cdots, 0)$
and $\tilde{p}=(\tilde{x}, 0, \cdots, 0)$ in \mathbb{R}^{n}. Also assume $x<\tilde{x}$. The length of a straight line connecting these two points is $\tilde{x}-x$. So we want to show that any curve in \mathbb{R}^{n} connecting these two points has at least length $\tilde{x}-x$. Let γ be an arbitrary curve with $\gamma(0)=p, \gamma(1)=\tilde{p}$. Write $\gamma(t)=\left(\gamma^{1}(t), \ldots, \gamma^{n}(t)\right)$. Then

$$
\operatorname{length}(\gamma)=\int_{0}^{1}\left|\gamma_{t}(t)\right| d t \geq \int_{0}^{1}\left|\gamma_{t}^{1}(t)\right| d t \geq \int_{0}^{1} \gamma_{t}^{1}(t) d t=\tilde{x}-x
$$

