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Exercise Sheet 4
To be handed in until October 18

1. Helicoid and catenoid are locally isometric

(a) Find a local isometry

φ : helicoid → catenoid .

(b) Verify that φ preserves K. What does it do to the principle curvatures
and principle directions?

(c*) Show that there is a continuous family of minimal surfaces deforming the
helicoid into the catenoid.

Solution:

(a) Let a ∈ R. Define the following two parametrizations ΨC,a, ΨH,a : U → R3

where

ΨC,a(u, v) = (a cosh u cos v, a cosh u sin v, au)
ΨH,a(u, v) = (a sinh u cos v, a sinh u sin v, av)

for U = {(u, v) ∈ R2 | − π < y < π}. Note that ΨC
a is a parametrization

of a catenoid as the surface of revolution of the curve x 7→ a cosh x
a (for

a ̸= 0) around the z-axis. On the other hand, ΨC
a is a parametrization of

a helicoid.
To compare the two parametrizations, let’s compute how they depend on
the parameters u, v:

ΨC,a
u = (a sinh u cos v, a sinh u sin v, a)

ΨC,a
v = (−a cosh u sin v, a cosh u cos v, 0)

ΨH,a
u = (a cosh u cos v, a cosh u sin v, 0)

ΨH,a
v = (−a sinh u sin v, a sinh u cos v, a)

The first fundamental form of the catenoid in the basis ΨC,a
u and ΨC,a

v is
given by(

|ΨC,a
u |2 ⟨ΨC,a

u , ΨC,a
v ⟩

⟨ΨC,a
u , ΨC,a

v ⟩ |ΨC,a
v |2

)
=
(

a2(sinh2 u + 1) 0
0 a2 cosh2 u

)
.
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The first fundamental form of the helicoid in the basis ΨH,a
u and ΨH,a

v is
given by(

|ΨH,a
u |2 ⟨ΨH,a

u , ΨH,a
v ⟩

⟨ΨH,a
u , ΨH,a

v ⟩ |ΨH,a
v |2

)
=
(

a2 cosh2 u 0
0 a2(sinh2 u + 1)

)
.

Since sinh2 u + 1 = cosh2 u the two parametrizations have the same first
fundamental form, hence

ϕ := ΨC,a ◦ (ΨH,a)−1 : helicoid → catenoid

defines a local isometry for each a.

(b) To get the curvatures we need to compute the 2nd fundamental forms and
the normals. Let us compute the second derivatives.

ΨC,a
uu = (a cosh u cos v, a cosh u sin v, 0)

ΨC,a
uv = (−a sinh u sin v, a sinh u cos v, 0)

ΨC,a
vv = (−a cosh u cos v, −a cosh u sin v, 0)

ΨH,a
uu = (a sinh u cos v, a sinh u sin v, 0)

ΨH,a
uv = (−a cosh u sin v, a cosh u cos v, 0)

ΨH,a
vv = (−a sinh u cos v, −a sinh u sin v, a).

The normal is

NC,a = ΨC,a
u × ΨC,a

v

|ΨC,a
u ||ΨC,a

v |
= (−a2 cosh u cos v, −a2 cosh u sin v, a2 sinh u cosh u)

a2 cosh2 u

= (− cos v, − sin v, sinh u)
cosh u

for the catenoid and

NH,a = ΨH,a
u × ΨH,a

v

|ΨH,a
u ||ΨH,a

v |
= (a2 cosh u sin v, −a2 cosh p[u cos v, a2 cosh u sinh u)

a2 cosh2 u

= (sin v, − cos v, sinh u)
cosh u

for the helicoid.
As |ΨC,a

u | = |ΨC,a
v | = a cosh u and using the argument from sheet 3 exercise

2, the formula for second fundamental form of the catenoid with respect
to the orthonormal basis ΨC,a

u

|ΨC,a
u |

,
ΨC,a

v

|ΨC,a
v |

is

1
a2 cosh2 u

(
⟨ΨC,a

uu , N⟩ ⟨ΨC,a
uv , N⟩

⟨ΨC,a
vu , N⟩ ⟨ΨC,a

vv , N⟩

)
= 1

a2 cosh2 u

(
−a 0
0 a

)
.
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So taking the trace we get HC,a = 0 and taking the determinant we get

KC,a = − 1
a2 cosh4 u

.

Similarly as |ΨH,a
u | = |ΨH,a

v | = a cosh u the second fundamental form of
the helicoid with respect to the basis ΨH,a

u

|ΨH,a
u |

,
ΨH,a

v

|ΨH,a
v |

is

1
a2 cosh2 u

(
0 −a

−a 0

)
.

So HH,a = 0 and
KH,a = − 1

a2 cosh4 u
.

Hence in both cases k1 = − 1
a cosh2 u

, k2 = 1
a cosh2 u

. The principal directions
for the catenoid are

eC,a
1 = ΨC,a

u

|ΨC,a
u |

, eC,a
2 = ΨC,a

v

|ΨC,a
v |

whereas the principal directions for the helicoid are

ΨH,a
u

|ΨH,a
u |

,
ΨH,a

v

|ΨH,a
v |

rotated by π/2.

(c) A regular conformal parametrization is a parametrization Ψ : U ⊂ R2 →
R3 such that the two directional derivatives Ψu, Ψv satisfy:

|Ψu| = |Ψv| ≠ 0 and Ψu ⊥ Ψv.

Claim. (i) Suppose Ψ is a regular conformal parametrization. Then
Ψ(U) is minimal iff Ψuu + Ψvv = 0.

(ii) Suppose ΨC , ΨH : U → R3 are conformal regular parametrizations
and

ΨC
u ⊥ ΨH

v , ΨH
u ⊥ ΨC

v and ⟨ΨC
u , ΨH

u ⟩ = ⟨ΨC
v , ΨH

v ⟩.

Then
Ψt(u, v) = cos t ΨC(u, v) + sin t ΨH(u, v)

is a regular conformal parametrization for every t ∈ R.
(iii) In the setting of (ii) and if ΨC and ΨH both define minimal surfaces

prove that also Ψt parametrizes a minimal surface for every t.

3



Differential Geometry I
D-MATH

Tom Ilmanen
Fall 2023

Proof. (i) By assumption Ψu(u, v) and Ψu(u, v) are an orthogonal basis
of TpM for p = Ψ(u, v). As in exercise 2 sheet 3 we know that the 2nd
fundamental form in orthonormal coordinates e1 = Ψu

|Ψu| , e2 = Ψv

|Ψv| is
represented by the symmetric matrix( ⟨Ψuu,N⟩

|Ψu|2
⟨Ψuv,N⟩
|Ψu||Ψv|

⟨Ψvu,N⟩
|Ψu||Ψv|

⟨Ψvv,N⟩
|Ψv|2

)

where N = e1 × e2. The mean curvature is the trace of this matrix:

H = ⟨Ψuu, N⟩
|Ψu|2

+ ⟨Ψvv, N⟩
|Ψv|2

.

As |Ψu| = |Ψv| we conclude that H = 0 iff ⟨Ψuu + Ψvv, N⟩ = 0.
To get the claimed statement, we need to prove that Ψuu + Ψvv is
parallel to N , i.e. orthogonal to both Ψu and Ψv. Indeed: Taking
the derivatives of

⟨Ψu, Ψu⟩ = ⟨Ψv, Ψv⟩ ⟨Ψu, Ψv⟩ = 0,

we get equations

⟨Ψuu, Ψu⟩ = ⟨Ψuv, Ψv⟩ = −⟨Ψu, Ψvv⟩.

So ⟨Ψuu + Ψvv, Ψu⟩ = 0. Similarly ⟨Ψuu + Ψvv, Ψv⟩ = 0.
(ii) The directional derivatives are

Ψt
u = cos t ΨC

u + sin t ΨH
u

Ψt
v = cos t ΨC

v + sin t ΨH
v

So we get

|Ψt
u|2 = cos2 t|ΨC

u |2 + 2 sin t cos t⟨ΨC
u , ΨH

u ⟩ + sin2 t|ΨH
u |2

= cos2 t|ΨC
v |2 + 2 sin t cos t⟨ΨC

v , ΨH
v ⟩ + sin2 t|ΨH

v |2 = |Ψt
v|2

and

⟨Ψt
u, Ψt

v⟩ = cos2 t⟨ΨC
u , ΨC

v ⟩+sin t cos t
(
⟨ΨC

u , ΨH
v ⟩ + ⟨ΨH

u , ΨC
v ⟩
)
+sin2 t⟨ΨH

u , ΨH
v ⟩ = 0.

(iii) Using the characterization of minimal surfaces from (i) twice we get

Ψt
uu + Ψt

vv = cos t ΨC
uu + sin t ΨH

uu + cos t ΨC
vv + sin t ΨH

vv

= cos t(ΨC
uu + ΨC

vv) + sin t(ΨH
uu + ΨH

vv) = 0,

and hence Ψt parametrizes a minimal surface.
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We see that ΨC,a and ΨC,a conformal regular parametrizations for each
a. Moreover, ΨC,a

u ⊥ ΨH,a
v and ΨC,a

v ⊥ ΨH,a
u .

As the catenoid and the helicoid are minimal surfaces we found a 2-
parameter family of minimal surface given as the image of Ψa,t.

2. More on isometries

A local isometry between surfaces in R3 preserves the Gauss curvature K but
normally not k1, k2, H, or the principal directions of curvature. So the situation
in exercise 1 was special in this respect.

(a) Compute K, k1, k2, H of a cone.

(b) Show that the cone (minus the vertex) is locally isometric to the plane.

(c) Is there a global isometry between the cone (minus the vertex) and the
plane minus a point?

Solution:

(a) Let 2ϕ be the angle of the cone at the vertex. That is the cone is the
surface of revolution for the curve y = f(x) = x tan ϕ. As fx = tan ϕ
and fxx = 0 we get using the formulas from exercise 4 sheet 2 that the
principal curvatures are:

kx = fxx(x)
(1 + f2

x(x))3/2 = 0

kθ = −1
f(x)

√
1 + fx(x)2

= −1
x tan ϕ

√
1 + tan ϕ2

= − cos ϕ

x sin ϕ
√

cos2 ϕ+sin2 ϕ
cos2 ϕ

= − cos2 ϕ

x sin ϕ
.

So K = 0 and H = kθ.

(b) The cone with angle 2ϕ at the vertex can be obtained by folding a sector
of the disk of angle 2π sin ϕ along the two straight segments. Denote U =
{(u, v) ∈ R2 | u ∈ (0, ∞), −π sin ϕ < v ≤ π sin ϕ}. The relevant sector of
the disk is the image of ΨS : U → R3 given by (u, v) 7→ (u cos v, u sin v, 0).
The first fundamental form in the basis ΨS

u and ΨS
v is given by(

|ΨS
u |2 ⟨ΨS

u , ΨS
v ⟩

⟨ΨS
u , ΨS

v ⟩ |ΨS
v |2

)
=
(

1 0
0 u2

)
.
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The cone is the image of the map ΨC : U → R3 given by

(u, v) 7→
(

u cos ϕ, u sin ϕ cos
(

v

sin ϕ

)
, u sin ϕ sin

(
v

sin ϕ

))
.

The tangent vectors for the cone ΨC(U) in the parametrization directions
are

ΨC
u (u, v) =

(
cos ϕ, sin ϕ cos

(
v

sin ϕ

)
, sin ϕ sin

(
v

sin ϕ

))
ΨC

v (u, v) =
(

0, −u sin
(

v

sin ϕ

)
, u cos

(
v

sin ϕ

))
The first fundamental form in the basis Ψu and Ψv is given by(

|Ψu|2 ⟨Ψu, Ψv⟩
⟨Ψu, Ψv⟩ |Ψv|2

)
=
(

1 0
0 u2

)
.

As the representations of the first fundamental form agree, the two surfaces
are locally isometric by the map

ϕ := ΨS ◦ (ΨC)−1 : cone → subset of the plane .

(c) There is no global isometry. Otherwise, there would also be a global
isometry from the plane to the cone (we can just add back the deleted
point and define the distance to this point as the Euclidean distance in
R3. A global isometry needs to extend. The points of distance 1 from the
vertex in the cone and the points of distance 1 from the origin in the plane
should get mapped onto each other by a global isometry. Both are a curve
(a circle) but they do not have the same length. So no global isometry
can exist.

3. The Pseudosphere

The pseudosphere is the surface of revolution for the curve γ : R → R2 parametrized
by

t 7→ (t − tanh t, sech t),

where tanh t = sinh t
cosh t and sech t = 1

cosh t . Compute K for the pseudosphere.

Solution:
The curve γ is defined by a parametrization, not explicitly as y = f(x)

as in the formulas derived in exercise 4 from sheet 2. We still can compute
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the necessary derivatives without solving explicitly for the y-coordinate. Let
x(t) = t − tanh t and y(t) = sech t. Note that

fx = yx = dy

dx
= dy

dt

dt

dx
= yttx.

Using d
dt tanh t = 1 − cosh2 t we get

xt = 1 − 1
cosh2 t

= cosh2 t − 1
cosh2 t

= sinh2 t

cosh2 t
, yt = − sinh t

cosh2 t
.

We get the reversed derivatives

tx = 1
xt

= cosh2 t

sinh2 t
, ty = 1

yt
= −cosh2 t

sinh t
.

This now lets us compute the derivative

yx = yttx = − sinh t

cosh2 t

cosh2 t

sinh2 t
= − 1

sinh t
.

and also the second derivative

yxx = (yx)ttx = cosh t

sinh2 t

cosh2 t

sinh2 t
= cosh3 t

sinh4 t
.

Using

(1 + y2
x)2 =

(
1 + 1

sinh2 t

)2
=
(

sinh2 t + 1
sinh2 t

)2

=
(

cosh2 t

sinh2 t

)2

= cosh4 t

sinh4 t

in the formula for the Gauss curvature K that we derived in sheet 2 exercise 4
we get

K = − yxx

y(1 + y2
x)2 = −cosh3 t

sinh4 t

1
1

cosh t

sinh4 t

cosh4 t
= −1.

So the pseudosphere is of constant negative Gauss curvature −1. That is why
it deserves the name pseudosphere in contrast to the sphere which has constant
positive curvature 1.

4. Shortest path in Rn

Prove that a straight line in Rn is the shortest path between two given points.

Solution:
As rotation and translation do not change the distance of two points, it is

enough to show the claim for two points that have coordinates p = (x, 0, · · · , 0)
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and p̃ = (x̃, 0, · · · , 0) in Rn. Also assume x < x̃. The length of a straight line
connecting these two points is x̃ − x. So we want to show that any curve in Rn

connecting these two points has at least length x̃ − x. Let γ be an arbitrary
curve with γ(0) = p, γ(1) = p̃. Write γ(t) = (γ1(t), . . . , γn(t)). Then

length(γ) =
∫ 1

0
|γt(t)| dt ≥

∫ 1

0
|γ1

t (t)| dt ≥
∫ 1

0
γ1

t (t) dt = x̃ − x.
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