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1. Two Atlases on the Sphere

(a) Give an atlas of 2n+ 2 charts on Sn that are graphs.

(b) Give an atlas of 2 charts on Sn that are given by stereographic projections.

Solution:
Recall Sn = {x = (x0, . . . , xn) ∈ Rn+1 | |x| = 1}.

(a) For j = 0, . . . , n, denote by

U+
j = {x ∈ Sn |xj > 0}, U−

j = {x ∈ Sn |xj < 0}

the hemispheres with respect to the coordinate j. The sets U±
j are open

subsets of Sn: For example

Ũ+
j = {x ∈ Rn+1 |xj > 0} = {x ∈ Rn+1 |xj > 0}

is open in Rn+1 as the preimage of the open set (0,∞) under the continu-
ous map Rn+1 → R sending x 7→ xj . As we have that U+

j = Ũ+
j ∩ S2 the

set U+
j is open in Sn in the subspace topology on Sn induced by Rn+1.

Similarly for U−
j .

We claim that the maps ψ±
j : U±

j → Rn sending

x = (x0, . . . , xn)→ (x0, . . . , x̂j , . . . , xn)

define an atlas on Sn.
The image ψ±

j (U±
j ) = Bn ⊂ Rn is the open unit ball for all j, in particular

an open set. The map ψ±
j is continuous since preimages of small balls in

Bn get mapped to small balls on the hemisphere which are open in the
subspace topology of Sn ⊂ Rn. Let f : Bn → R be the smooth map
y 7→

√
1− y2. Then for x ∈ U±

j by definition of the sphere:

xj = ±f(x0, . . . , x̂j , . . . , xn).

(Hence U±
j is the graph of the map ±f after appropriately switching the

coordinates x0, . . . , xn. Let us give the rest of the argument here not

1



Differential Geometry I
D-MATH

Tom Ilmanen
Fall 2023

relying on the fact seen in the lecture that being locally a graph is enough
to have an atlas.)
The inverse of ψ±

j (when we restrict the target space of the map ψ±
j to

Bn) is the map Bn → U±
j given by

y = (y1, . . . , yn) 7→ (y1, yj−1,±f(y), yj , . . . , yn).

This map is continuous, in particular, ψ±
j : U±

j → Bn is a homeomor-
phism. This concludes the argument that (ψ±

j , Uj) is a system of charts
on Sn.
Let us now prove that this system of charts is an atlas. First, the sets U±

j

cover Sn (otherwise xj = 0 for all j but this cannot happen for a point
on the sphere). Second, we need to prove that all transition maps are
smooth. Let ε, δ ∈ {±1} be variables for the signs. Then overlaps look
like

Uεj ∩ Uδk = {x ∈ Sn | εxj > 0, δxk > 0}.
In particular, the overlap is empty for (k = j and ε = −δ), so nothing to
prove in this case. For j < k, the transition functions are

ψεj ◦ (ψδk)−1 : {y ∈ Bn | εyj > 0} → Uεj ∩ Uδk → {y ∈ Bn | δyk > 0}

given by

(y1 . . . , yn) 7→ (y1, . . . , yk−1, δf(y), yk, . . . , yn)

7→ (y1, . . . , ŷj . . . , yk−1, δf(y), yk, . . . , yn)

which is smooth.

(b) Define U± = Sn \ {N±} where N± = (0, . . . , 0,±1) is the north pole pole
N+ and the south pole N− with respect to the last coordinate xn. Clearly,
the two charts U± cover Sn. The stereographic projections ψ± : U± → Rn
are given by continuous functions

(x0, . . . , xn) 7→ (x0, . . . , xn−1)
1∓ xn .

It has inverse ψ−1
± : Rn → U± given by

(y1, . . . , yn) 7→ (2y1, . . . , 2yn,±(|y|2 − 1))
|y|2 + 1 .

The overlap of the two charts is U+∩U− = Sn\{N+, N−}. The transition
function ψ− ◦ ψ−1

+ : Rn \ {0} → Rn \ {0} is given by

(y1, . . . , yn) 7→ y

|y|2

which is smooth. Similarly for ψ+ ◦ ψ−1
− . So the charts are compatible

and we have an atlas on S2.
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2. An atlas on the real projective space

Let RPn := {lines through the origin in Rn+1}. For 0 ̸= x ∈ Rn+1, let L = [x]
be the line through x and 0.

(a) Define a suitable topology on RPn. (Hint: Define a metric on RPn.)

(b) For any j ∈ {0, . . . n} define

Rnj := {x = (x0, . . . , xn) ∈ Rn+1 |xj = 0} ∼= Rn,
Zj := {L ∈ RPn |L ⊂ Rnj },
Uj := RPn \ Zj .

Show that Uj = {[x] ∈ RPn |xj ̸= 0} and that Uj is open in RPn.

(c) Define homogeneous coordinates on Uj by ψj : Uj → Rn by1

ψj([x]) = (x0, . . . , x̂j , . . . xn)
xj

.

Prove that the maps ψj are well-defined and that the coordinate systems
(Uj , ψj) give an atlas on RPn.

Solution:

(a) Let L,K ∈ RPn be two lines through the origin in Rn+1. Then define

dRPn(L,K) = angle(L,K) ∈
[
0, π2

]
.

If the lines are L = [x] and K = [y], and θ the angle between L and K we
have

cos θ = |⟨x, y⟩Rn+1 |
|x||y|

∈ [0, 1].

Note that the formula works for any choice of x ∈ L and y ∈ K, as for
another point x̃ = λx ∈ L with 0 ̸= λ ∈ R the λ cancels out in the formula.
Similarly for K. From another point of view: Suppose x± ∈ L and y± ∈ K
are the intersection of the lines with the unit sphere Sn ⊂ Rn+1. Then

dRPn(L,K) = min{d2
S(x−, y−), d2

S(x−, y+)}.
1The hat is a useful notation that means that this variable is omitted, i.e.

(x0, . . . , x̂j , . . . , xn) := (x0, . . . , xj−1, xj+1, . . . , xn).
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So in particular, if the distance (i.e. the angle) between two points x, y ∈
Sn is smaller than π

2 then dSn(x, y) = dRPn([x], [y]). (So Sn and RPn are
actually locally isometric).

(b) The lines L = [x] in Zj have are represented by points with xj = 0, i.e. are
orthogonal to the line Lj = j-axis, or equivalently, Lj = [(0, . . . , 0, 1, 0, . . . , 0)]
where the 1 is in the j-th entry. So lines in Uj are represented by points
with xj ̸= 0, so have an angle strictly smaller than π

2 . In the metric given
above, Uj is the open ball of radius π

2 with center Lj .

(c) Suppose L = [x] = [x̃]. Then x̃ = λx ∈ L with 0 ̸= λ ∈ R. But

ψj([x̃]) = (λx0, . . . , λ̂xj , . . . , λxn)
λxj

= (x0, . . . , x̂j , . . . , xn)
xj

= ψj([x]).

Hence ψj is well-defined.
The map Uj is a bijection: As xj ̸= 0 for L = [x] ∈ Uj , every line can
uniquely be represented by some x of the form (x0, . . . , xj−1, 1, xj+1, . . . , xn).
So ψj is invertible with inverse ψ−1

j : Rn → Uj given by

(y1, . . . , yn) 7→ (y1, . . . , yj−1, 1, yj , . . . , yn).

Moreover, ψj is a homeomorphism: As xj ̸= 0 for L = [x] ∈ Uj , every
line can uniquely be represented by some x ∈ Sn with xj > 0, i.e. in the
upper hemisphere of Sn with respect to the coordinate j. The map

x 7→ (x0, . . . , x̂j , . . . xn)
xj

from U+
j ⊂ Sn to Rn for U+

j as defined in exercise 1(a) is clearly a local
homeomorphism. As Sn and RPn are locally homeomorphic ( as estab-
lished in (a)) the map ψj : Uj → Rn is a local homeomorphism. As the
map ψj is also bijective it is a (global) homeomorphism.
Let us now prove that this system of charts is an atlas. First, the sets Uj
cover RPn (otherwise xj = 0 for all j but this cannot happen as x ̸= 0).
Second, we need to prove that all transition maps are smooth. Then
overlaps look like

Uj ∩ Uk = {[x] ∈ RPn |xj ̸= 0, xk ̸= 0}.

Let us check now that the charts are compatible. For j < k, the transition
functions are

ψj ◦ (ψk)−1 : {y ∈ Rn | yj ̸= 0} → Uj ∩ Uk → {y ∈ Rn | yk ̸= 0}

given by

(y1 . . . , yn) 7→ (y1, . . . , yk−1, 1, yk, . . . , yn)

7→ (y1, . . . , ŷj , . . . , yk−1, 1, yk, . . . , yn)
yj

which is smooth.
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3. Two diffeomorphic but not equal structures on the real line

Consider R with its usual differentiable structure, induced by the chart φ : R→
R, φ(x) = x. Also consider the differentiable structure induced by the chart
ψ : R→ R, ψ(x) = x3.

Show that the two differentiable structures are not equal, but that neverthe-
less, the two differentiable manifolds are diffeomorphic.

Solution:
Both are global charts. The transition function ψ ◦φ−1 : R→ R is given by

x 7→ x3 which is smooth, bijective with continuous but not smooth inverse, so
the two charts are not compatible. However, to see that the both structures on
R are diffeomorphic, we need to find a map f : R→ R which is a diffeomorphism
when we equip the first R with the atlas induced by φ and we equip the second
R with the atlas induced by ψ. More concretely, we want to have an f such
that the composition from left to right in

R φ←− R f−→ R ψ−→ R

is a diffeomorphism. Set f(x) = ψ−1(x) then the above composition is the
identity.

4. Quaternions

LetQ denote the vector space R4 with basis {1, i, j, k} and multiplication subject
to the laws i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
(These make Q into an algebra.)

(a) Show that every non–zero element u ∈ Q is invertible.
Hint: Set u = a + bi + cj + dk. It is useful to define the conjugate ū := a − bi − cj − dk

and to prove ūu = |u|2 = uū.

(b) Show that |uv| = |u||v| for u, v ∈ Q.

(c) Show that S3 := {u ∈ Q | |u| = 1} has the structure of a group.

Solution:
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(a) Let us prove the hint:

ūu = (a+bi+ cj + dk)(a− bi− cj − dk)
= a2−abi− acj − adk + abi− bi2 − bcij − bdik

+ acj − bcji− c2j2 − cdjk + adk − bdki− cdkj − d2k2

= a2+b2 + c2 + c2 = |u|2

Similarly, uū = |u|2. We see immediately that v = ū
|u|2 is an inverse for a

given non-zero u ∈ Q.

(b) Direct proof:
Let u = a+ bi+ cj + dk and v = e+ fi+ gj + hk. Then |uv|2 is equal to

|(a+bi+ cj + dk)(e+ fi+ gj + hk)|2 =
= |ae+afi+ agj + ahk + bei− bf + bgk − bhj

+ cej − cfk − cg + chi+ dek + dfj − dgi− dh|2

= |ae− bf − cg − dh+ (af + be+ ch− dg)i
+ (ag − bh+ ce+ df)j + (ah+ bg − cf + de)k|2

= (ae− bf − cg − dh)2 + (af + be+ ch− dg)2

+ (ag − bh+ ce+ df)2 + (ah+ bg − cf + de)2

= (a2 + b2 + c2 + d2)(e2 + f2 + g2 + h2)

which is |u|2|v|2.
Alternative proof:
Show that uv = v̄ū by direct computation. Then we get

|uv|2 = uvuv = uvv̄ū = u|v|2ū = uū|v|2 = |u|2|v|2.

(c) The identity element is 1. As multiplication preserves the norm by (b) we
have uv ∈ S3 for u, v ∈ S3. Moreover, if u ∈ S3 then its inverse is ū which
is also in S3.

5. For those new to topology

(a) Prove that the subspace topology is a topology.

(b) Prove that the quotient topology is a topology.

(c) Show that the subspace topology for S1 in R2 coincides with the quotient
topology R→ S1.
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(d) Recall that a topological space X is not connected if there are non-empty,
open, disjoint subsets U, V ⊂ X such that U ∪ V = X. Any U that arises
this way (and X itself) is called a component of X. Show that if X is a
manifold there is a unique decomposition

X =
⋃
α

Uα,

where Uα are disjoint connected components of X.

(e) What happens if we want to decompose the Cantor set X as in (d)?

Solution:

(a) Let (X, τ) be a topological space and A ⊂ X a subset. Then the subspace
topology on A induced by (X,A) is given by

τA = {U ∩A |U ∈ τ}.

To check that this defines a topology, let us check the axioms:

• ∅ = ∅ ∩A ∈ τA and A = X ∩A ∈ τA as ∅, X ∈ τ .
• Suppose Ũ , Ṽ ∈ τA, i.e. there are U, V ∈ τ such that Ũ = U ∩A and
Ṽ = V ∩ A. Then Ũ ∩ Ṽ = (U ∩ V ) ∩ A ∈ τA as U ∩ V ∈ τ using
that τ is a topology and thus U ∩ V ∈ τ .

• Suppose Ũβ ∈ τA for all β in some index set B, then for each β ∈ B
there is Uβ ∈ τA such that Ũβ = uβ ∩A. Then⋃

Ũβ =
⋃

(Uβ ∩A) =
(⋃

Uβ

)
∩A ∈ τA

using that τ is a topology and thus
⋃
Uβ ∈ τ .

(b) Let (X, τ) be a topological space and ∼ an equivalence relation on X.
Denote X/∼ the space of equivalence classes and π : X → X/∼ given by
p 7→ [p] the canonical surjection, sending p to its equivalence class. Then
the quotient topology on X/∼ is given by

τ∼ = {U ⊂ X/∼ |π−1(U) ∈ τ}.

Note that by definition preimages of open sets are open, so π is continuous.
To check that this defines a topology, let us check again the axioms:

• π−1(∅) = ∅ ∈ τ and π−1(X/∼) = X ∈ τ . Hence ∅, X ∈ τ∼.
• Suppose U, V ∈ τ∼, i.e. π−1(U), π−1(V ) ∈ τ . Then π−1(U ∩ V ) =
π−1(U)∩π−1(V ) ∈ τ as τ is a topology and hence unions of elements
in τ are again in τ .
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• Suppose Uβ ∈ τ∼ for all β in some index set B, then for each β ∈ B
π−1(Uβ) ∈ τ by definition of the subspace topology. But then

π−1
(⋃

Uβ

)
=

⋃ (
π−1Uβ

)
∈ τ

using that τ is a topology and infinite unions of elements in τ are
again in τ .

(c) Let τS be the subspace topology on S1 coming from S1 ⊂ R2 and τQ be
the quotient topology coming from R→ R/x∼x+2πx. Let Ũ ∈ τS , i.e there
is a U ∈ τR2 such that U ∩ S1 = Ũ . So for any p ∈ Ũ there is an open
disk D ⊂ U with p as the center. Note that D ∩ S1 is open in S1. For D
small enough D ∩ S1 is just an open circular arc I. If we look at S1 as a
quotient of R then the circular segment corresponds to an open interval Ĩ.
This is open in the quotient topology τQ as π−1(Ĩ) = I+2πZ is open in R
for I an interval that projects to Ĩ. The converse follows by the argument
backwards. For a point in an open set in the quotient topology, there is
an interval Ĩ, which corresponds to a circular arc in S1 ⊂ R2.

(d) First note that two distinct connected components must be disjoint, be-
cause if U, V are connected components and the intersection U ∩V is non-
empty, then U ∪ V is open and connected (U ∪ V not connected would
imply that either U or V is not connected by using a disjoint nontrivial
decomposition of U ∪ V into disjoint sets.).
Let now x ∈ X we need to show that x is contained in some connected
component Ux. For that let

U = {U ⊂ X |U open, connected andx ∈ U}.

Then Ux =
⋃
U ∈ UU . Here we used that X is a manifold: U is not

empty, as for any point x in X there is an open set V ⊂ X containing x
which is homeomorphic by a map ψ to a nonempty open subset Ṽ ⊂ Rn.
But taking the preimage of an open ball B ⊂ Ṽ that contains ψ(x),
produces a connected open subset ψ−1(B) which contains x. Actually, the
claimed decomposition statement is true for any locally connected space
and manifolds are locally connected.

(e) The Cantor set is not locally connected. Any nonempty open subset of the
Cantor set C is disconnected, hence C cannot be the union of connected
open subsets.
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