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1. A smooth projection Prove: The projection π : Sn → RPn, x 7→ [x] is
smooth.

Solution:
Let us recall the charts from exercises 1 and 2 from sheet 5. Recall that

Sn ⊃ U±
j = {x ∈ Sn | ± xj > 0}

ψ±
j−→ Rn

and
RPn ⊃ Uj = {x ∈ Sn |xj ̸= 0} ψj−→ Bn

are charts for j = 0, . . . , n that define an atlas on Sn and on RPn, respectively.
Note that π|U±

j
: U±

j → Uj is a bijection for every j, actually a homeomorphism.
Therefore, to prove that π is smooth it is enough to show that the compo-

sition

Bn = ψ±
j (U±

j )
(ψ±

j )−1

−→ U±
j

π−→ Uj
ψj−→ ψj(Uj) = Rn

is smooth. The composition is given by

y 7→ y

±
√

1 − y2
j

which is smooth for all j. This proves that π is smooth.

2. The orthogonal group Let O(n) :=
{
A ∈ Rn×n | ATA = I

}
be the group

of orthogonal matrices. Characterize the tangent space TIO(n) of O(n) at the
identity I as follows.

(a) Let A(t) be a smooth curve in Rn×n with A(0) = I, A(t) ∈ O(n). Find
an equation satisfied by B := dA(0)/dt.

(b) The exponential map for sqaure matrices C ∈ Rn×n is given by

eC =
∞∑
k=0

Ck

k! .

Prove that if A(t) = eBt then d
dtA(t) = BeBt.
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(c) For any B satisfying the equation from a) find a curve A(t) in O(n) with
initial velocity B.

(d) A very beautiful picture of any such A(t) comes by considering the diag-
onalization of orthogonal matrices to 2 × 2 blocks. Write Rn as the or-
thogonal sum of 2 dimensional subspaces Vi (and possible a 1-dimensional
subspace W ) and set each Vi rotating at constant angular speed θi.

(e) What is the dimension of O(n)?

Solution:

(a) Let A(t) be a smooth curve in Rn×n with A(0) = I, A(t) ∈ O(n) for
t ∈ (−ε, ε). The latter property is

A(t)TA(t) = I

for all t. Taking the derivative of this equation yields(
d

dt
A(t)

)T

A(t) +A(t)T
(
d

dt
A(t)

)
= 0

So for t = 0, using that A(0) = I we get(
d

dt
A(0)

)T

+
(
d

dt
A(0)

)
= 0.

So B := d
dtA(0) is an antisymmetric matrix.

(b) We have d
dtA(t) = BeBt = eBtB using componentwise derivative.

(c) Suppose B is an anti-symmetric matrix. Then define A(t) = etB . By b)
d
dtA(0) = Be0 = B.

We are left to show that A(t) is in O(n) for any t. Recall that if C and D
are matrices that commute then eC+D = eCeD. But tB and tBT commute
as

BBT = B(−B) = −B2 = (−B)B = BTB

using that antisymmetry BT = −B. Hence

A(t)TA(t) =
(
etB

)T = etB = etB
T

etB = etB
T +tB = et(B

T +B) = e0 = I.

Let us give a second proof of the fact that A(t) is in O(n). Using b)

d

dt
(A(t)TA(t)) =

(
d

dt
A(t)

)T

A(t) +A(t)T
(
d

dt
A(t)

)
= BT etB

T

etB + etB
T

BetB

= (BT +B)etB
T

etB = 0.
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So A(t)TA(t) is constant and as A(0)TA(0) = IT I = I we have A(t)TA(t)
for all t.

(d) Antisymmetric 2 × 2-matrices are of the form

Bθ =
(

0 −θ
θ 0

)
for a ∈ R. They are a one-dimensional linear subspace of all 2×2-matrices.
The corresponding curve in O(2) is

Aθ(t) = etBθ =
(

cos(θt) − sin(θt)
sin(θt) cos(θt)

)
.

For a general antisymmetric n × n matrix B let A = eB . Then by linear
algebra, for n even there are angles θ1, . . . , θn/2 and such that with respect
to a base change to 2-dimensional subspaces V1, . . . , Vn/2 the matrix A is

A = diag(Rθ1 , . . . , Rθn/2).

where Rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. But then

A(t) = etB = diag(Rθ1t, . . . , Rθn/2t)

in the basis given by the subspaces Vj . Similarly for n odd

A(t) = etB = diag(Rθ1t, . . . , Rθ(n−1)/2t,±1).

(e) Let Ejk be the matrix having everywhere entry 0 except being 1 in row j
and column k. The linear subspace of antisymmetric matrices is of vector
space dimension n(n−1)

2 with basis given by Ejk − Ejk for j < k. There
are exactly

(
n
2
)

= n(n−1)
2 pairs (j, k) with j < k. The dimension of the

tangent space is the same as the dimension of the manifold, hence

dimO(n) = n(n− 1)
2 .

3. Cutoff functions Let M be a smooth manifold. For a function u : M → R
define the support of u as

spt (u) := {p ∈ M |u ̸= 0}.

We say that a set Z is compactly contained in an open set U ⊂ M if Z is compact
and Z ⊂ U . Write K ⊂⊂ U in this case. Prove: if U is an open set in M and
K a compact subset of U , then there exists a cutoff function for K in U , i.e. a
function χ : M → R such that
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i) χ is smooth,

ii) 0 ≤ χ ≤ 1,

iii) χ ≡ 1 on K,

iv) spt(χ) ⊂⊂ U .

Hint: Recall without proof from analysis that the function

f(x) :=
{
e−1/x if x > 0,
0 if x ≤ 0,

is a smooth map.

Solution:

Claim. There is a smooth function f1 : R → [0, 1] such that f1 is 0 on (−∞, 0]
and is 1 on [1,∞).

Proof. Set
f1 = f(x)

f(x) + f(1 − x) .

Claim. There is a smooth function f2 : Rn → [0, 1] such that f2 is 0 on |x| ≥ 2
and is 1 on |x| ≤ 1.

Proof. Set
f2 = f1(1 − |x|).

Claim. Let K̃ ⊂ Rn be compact. Then there is a smooth compactly supported
function fK̃ : Rn → [0, 1] which is 1 on K̃.

Proof. As K̃ is compact it is bounded, so K̃ ⊂ BR(0) for some R > 0. Then set
fK̃(x) = f2(x/R).

Now to the manifold M and the sets K ⊂ U ⊂ M . As U ⊂ M is open, U is a
manifold itself. Only look at charts of the manifold U that are homeomorphisms
ψj : Uj → Rn for Uj ⊂ U open, i.e ψj(Uj) = Rn. As K is compact we can cover
K by finitely many such charts U1, . . . , Uk with homeomorphisms Uj → Rn and
such that ψ−1

1 (B1(0)), . . . , ψ−1
k (B1(0)) cover K. Note that

K =
k⋃
j=1

Kj
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is a union of compact sets Kj := K∩ψ−1
j (B1(0)) ⊂ K. The sets K̃j := ψj(Kj) ⊂

Rn are compact, so there are compactly supported functions g̃j : Rn → [0, 1]
such that g̃j is 1 on K̃j . The function

gj(x) =
{
g̃j(ψj(x)) x ∈ Uj ,

0 x ∈ M

is well-defined and smooth as g̃j is compactly supported. Moreover, the support
of gj is the preimage of the support of g̃j under ψj . Hence gj is compactly
supported with support contained in U .

Next define the smooth function g : M → [0,∞) by

g(x) =
k∑
j=1

gj(x).

Note that because every x ∈ K is contained in some Kj that gj(x) = 1 and
hence g(x) ≥ 1. The function χ : M → [0, 1] defined by χ(x) = f1(g(x)) satisfies
properties i)-iv).

4. Coordinate vector fields are linearly independent Prove that(
∂

∂x1

)
p,ψ

, . . . ,

(
∂

∂xn

)
p,ψ

are linearly independent tangent vectors.
Hint: Compute (

∂

∂xj

)
p,ψ

· (ζxk),

where x1, . . . , xn : U → R are the coordinate functions associated to (U,ψ) and ζ is a cutoff
function for p in U (i.e. equal to 1 in a neighbourhood of p.)

Solution:
Recall from the lecture that for a smooth function M → R we have the

formula (
∂

∂xj

)
p,ψ

f = ∂f̃

∂xj
(p̃)

for f̃ = f ◦ ψ−1 : ψ(U) → R and p̃ = ψ(p). The function fk = ζxk is a well-
defined smooth map M → R. Note that f̃k : ψ(U) → R is by definition the
coordinate map Rn ∋ x → xk ∈ R near p̃ = ψ(p). So(

∂

∂xj

)
p,ψ

(ζxk) = ∂xj

∂xk
(ψ(p̃)) = δjk :=

{
1 j = k,

0 j ̸= k.
.

This proves that the maps(
∂

∂x1

)
p,ψ

, . . . ,

(
∂

∂xn

)
p,ψ

: C∞(M) → R

5



Differential Geometry I
D-MATH

Tom Ilmanen
Fall 2023

are linearly independent as elements of of the vector space Hom(C∞(M),R).
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