Exercise Sheet 7

To be handed in until November 08

1. The Veronese embedding

- (a) Consider the map $F : \mathbb{R}^3 \to \mathbb{R}^4$ given by $F(x, y, z) := (x^2 y^2, xy, xz, yz)$. Prove that F induces a well-defined map $f : \mathbb{RP}^2 \to \mathbb{R}^4$ characterized by f([p]) := F(p) for any $p \in S^2$.
- (b) Prove that f is injective.
- (c) Prove that f is an immersion.
- (d) Prove that f is a homeomorphism onto its image. (The map f is called the *Veronese embedding* of \mathbb{RP}^2 in \mathbb{R}^4 . Note that \mathbb{RP}^2 does not embed in \mathbb{R}^3 .)

Solution:

- (a) F is given by homogeneous polynomials of even degree. That is $F(\lambda x) = \lambda^2 F(x)$ for any $\lambda \in \mathbb{R} \setminus \{0\}$. More concretely, for $p \in S^2$ we see that $F(-p) = (-1)^2 F(-p) = F(-p)$ as the minus cancels everywhere. Hence f([p]) = f([-p]) so f is well-defined.
- (b) Suppose f([p]) = f([q]) for p = (x, y, z), q = (u, v, w) with |p| = |q| = 1. We want to show that $p = \lambda q$ for some $\lambda \in \{\pm 1\}$. By assumption, we have the following equations

X

$$y^2 - y^2 = u^2 - v^2,$$

 $xy = uv,$
 $xz = uw,$
 $yz = vw.$

If x = 0 then either u or v is 0 by the second equation. Suppose u = 0. Then by the first equation $y = \pm v$. If now $y = \pm v \neq 0$ it follows by the last equation that $z = \pm w$ and hence indeed p = q or p = -q. If y = v = x = w = 0 then as p, q are on the sphere, they are either (0, 0, 1)or (0, 0, -1) and hence also equal or antipodal.

The same argument works when x = 0 and v = 0. If y = 0, we again get either that u or v is 0.

So assume $x \neq 0$ and $y \neq 0$. Then

$$z^2 = \frac{uw}{x}\frac{vw}{y} = \frac{uvw^2}{xy} = w^2$$

So $z = \pm w$. If $z = \pm w$ are non-zero, we get $y = \pm v$ and then also $x = \pm u$ by the middle two equations, so $p = \pm q$. If z = w = 0 then as p, q lie on the sphere $x^2 + y^2 = 1 = u^2 + v^2$, so adding this to the first equation we get $2x^2 = 2u^2$, so again $x = \pm u$. Then also $y = \pm v$ and consequently $p = \pm q$.

(c) To prove that f is smooth we need to prove that $f \circ \psi_j^{-1} : \mathbb{R}^2 \to \mathbb{R}^4$ is smooth where $\psi_j : U_j \to \mathbb{R}^2$ are the chart from exercise sheet 5 exercise 2 for j = 0, 1, 2. The maps are

$$(u,v) \stackrel{\psi_j^{-1}}{\mapsto} \begin{cases} [1,u,v] \stackrel{f}{\mapsto} (1-v^2,u,v,uv)/r^2, & j=0, \\ [u,1,v] \mapsto (u^2-1,u,uv,v)/r^2, & j=1, \\ [u,v,1] \mapsto (u^2-v^2,uv,u,v)/r^2, & j=2. \end{cases}$$

which are all smooth. Here $r^2 = 1^2 + u^2 + v^2$.

The derivatives of $f \circ \psi_j^{-1}$ at $(u, v) = \psi_j([p])$ are the linear maps $\mathbb{R}^2 \to \mathbb{R}^4$ represented by the matrix

$$\begin{split} D(f \circ \psi_1^{-1})(u, v) &= \frac{1}{r^4} \begin{pmatrix} -2u(1-v^2) & -2vr^2 - 2v(1-v^2) \\ r^2 - 2u^2 & -2uv \\ -2uv & r^2 - 2v^2 \\ vr^2 - 2u^2v & ur^2 - 2uv^2 \end{pmatrix}, \\ D(f \circ \psi_2^{-1})(u, v) &= \frac{1}{r^4} \begin{pmatrix} 2ur^2 - 2u(u^2 - 1) & -2v(u^2 - 1) \\ r^2 - 2u^2 & -2uv \\ vr^2 - 2u^2v & ur^2 - 2uv^2 \\ -2uv & r^2 - 2v^2 \end{pmatrix}, \\ D(f \circ \psi_3^{-1})(u, v) &= \frac{1}{r^4} \begin{pmatrix} 2ur^2 - 2u(u^2 - v^2) & -2vr^2 - 2v(u^2 - v^2) \\ vr^2 - 2u^2v & ur^2 - 2uv^2 \\ r^2 - 2u^2v & ur^2 - 2uv^2 \\ r^2 - 2u^2 & -2uv \\ -2uv & r^2 - 2v^2 \end{pmatrix} \end{split}$$

The three maps are injective for all pairs $(u, v) \in \mathbb{R}^2$, hence also $D_{[p]}f$: $T_{[p]}M \to \mathbb{R}^4$ is injective for every $[p] \in \mathbb{RP}^2$. This proves that f is an immersion.

(d) Note that \mathbb{RP}^n is compact for every n as the image of a compact set under the continuous map $S^n \to \mathbb{RP}^n$. From topology we know that a continuous injective map from a compact Hausdorff domain is automatically a homeomorphism onto its image.

2. TS^3 has a global trivialization

A Lie group is a smooth manifold endowed with a group structure such that the group operations $(g, h) \mapsto gh$ and $g \mapsto g^{-1}$ are smooth.

- (a) Show that $S^3 := \{V \in Q : |V| = 1\}$ (where Q are the quaternions) is a Lie group.
- (b) Construct smooth vector fields X, Y, Z on S^3 such that X(u), Y(u), Z(u) are independent for each u in S^3 . Conclude that $TS^3 \cong S^3 \times \mathbb{R}^3$.

Solution:

- (a) Let $g \in U_1, h \in U_2$ and $gh \in U_3$, where $\psi_{j_r} : U_{j_r} \to B^n$ are hemisphere charts as described in exercise 1 sheet 5 for $j_1, j_2, j_3 \in \{0, 1, 2, 3\}$. Denote by $m : S^3 \times S^3 \to S^3$ the multiplication in S^3 . Then $\psi_{j_3} \circ m \circ (\psi_{j_1} \times \psi_{j_2})^{-1} :$ $B^n \times B^n \to B^n$ is given by the composition of smooth functions as the product of quaternions $Q \times Q \to Q$ is smooth. Same for the inverse.
- (b) Let $u \in S^3 \subset Q \cong \mathbb{R}^4$. Then $iu, ju, ku \in Q \cong \mathbb{R}^4$ span $T_u S^3$. Let us prove that iu is in the tangent space of S^3 at u. Identify $Q \cong \mathbb{C} \times \mathbb{C}$ by u = z + jw as in exercise 4. Then iu = iz + ijw is orthogonal to u as

$$\langle u, iu \rangle_{\mathbb{R}^4} = \langle z, iz \rangle_{\mathbb{R}^2} + \langle w, iw \rangle_{\mathbb{R}^2} = 0$$

as multiplication by *i* rotates a complex number by $\pi/2$ and so *z* is perpendicular to *iz* and *w* is perpendicular *iw*. Similarly show that

are an orthonormal basis of \mathbb{R}^4 .

Hence the vector fields X, Y, Z defined by X(u) = iu, Y(u) = ju, Z(u) = ku are pointwise independent vector fields.

Whenever we find X_1, \ldots, X_n pointwise linearly independent vector fields on a *n*-dimensional manifold M the map $M \times \mathbb{R}^n \to TM$ given by

$$(p; a_1, \ldots, a_n) \mapsto \left(p, \sum_{r=1}^n a_r X_r(p))\right)$$

is an diffeomorphism.

As we found 3 vector fields on S^3 that are pointwise linearly independent, we have $S^3 \times \mathbb{R}^3 \cong TS^3$.

3. The Hopf fibration

- (a) Prove that every sphere of odd dimension carries a nowhere vanishing vector field.
- (b) Prove that S^{2n-1} has a "smooth" decomposition into circles. They are called *Hopf fibers* of S^{2n-1} .
- (c*) Can S^2 be decomposed into a disjoint union of submanifolds diffeomorphic to S^1 ?

Solution:

(a) Look at $S^{2n-1} \subset \mathbb{R}^{2n} \cong \mathbb{C}^n$. Then define X(p) = ip. That is if $p = (z_1, \ldots, z_n) \in \mathbb{C}^n$ then $X(p) = ip = (iz_1, \ldots, iz_n)$. The vector X(p) is orthogonal to p:

$$\langle p, X(p) \rangle_{\mathbb{R}^{2n}} = \langle p, ip \rangle_{\mathbb{R}^{2n}} = \sum_{j=1}^{n} \langle z_j, iz_j \rangle_{\mathbb{R}^2} = 0$$

as multiplication by *i* rotates a complex number by $\pi/2$ and so iz_j is perpendicular to the original complex number z_j . The orthogonality of *p* and X(p) proves that X(p) is a tangent vector at *p*. Since |X(p)| = |ip| =|p| = 1 for any *p* the vector field *X* defines a nowhere vanishing vector field on S^{2n-1} .

- (b) For any $p \in S^{2n-1}$ look at the great circle $\gamma_p : \mathbb{R} \to S^{2n-1}$ given by $t \mapsto e^{it}p$. It parametrizes a circle as $\gamma(t+2\pi) = \gamma(t)$. Its tangent vector is $\gamma'_p(t) = ie^{it}p = i\gamma_p(t) = X(\gamma_p(t))$. So γ follows the vector field X. This is the reason that two different such circles have either the same or a disjoint image. Indeed, suppose $q \in \gamma_p(t)$, i.e. $q = e^{it_0}p$ for some $t_0 \in \mathbb{R}$. Then $\gamma_q(t) = e^{it}q = e^{i(t+t_0)}p$, so in particular the image of γ_p and γ_q agree. Conversely, if $q \neq e^{it}p$ for any $t \in \mathbb{R}$ then also $qe^{is} \neq e^{it}p$ for any $t \in \mathbb{R}$, $s \in \mathbb{R}$. So the circles are disjoint. (You could also prove that being on the same circle is an equivalence relation and then use that equivalence classes form a partition of a set.)
- (c) No. We need the smooth version of the Jordan-Schoenflies Theorem:

Theorem. (Smooth Jordan-Schoenflies Theorem)

(i) Deleting an embedded circle in S^2 divides S^2 into two parts that are diffeomorphic to open disks.

Differential Geometry I	Tom Ilmanen
D-MATH	Fall 2023

(ii) Deleting an embedded circle in an open disk D divides D into two parts, one diffeomorphic to an open disk and one diffeomorphic to an open annulus.

Suppose S^2 can be decomposed into a disjoint union of submanifolds diffeomorphic to S^1 . Choose one circle C_0 . By the smooth Jordan-Schoenflies Theorem $S^2 \setminus C_0$ is diffeomorphic to two disks. Choose one of these disks and call it D. Every circle must entirely lie in D or in $S^2 \setminus D$ as the circles are assumed to be disjoint. Again by the smooth Jordan-Schoenflies Theorem any circle C in D divides D into two components D_C and A_C , where D_C is diffeomorphic to an open disk and and A_C diffeomorphic to an open annulus. So for any other circle \tilde{C} either $\tilde{C} \subset A_C$ or $\tilde{C} \subset D_C$. We can define a partial order on the set of circles that are contained in D. Define

$$C_1 < C_2$$
 iff $C_1 \subset D_{C_2}$.

Note that if $C_1 < C_2$ then also $D_{C_1} \subset D_{C_2}$ and $\operatorname{area}(D_{C_1}) < \operatorname{area}(D_{C_2})$ as $D_{C_2} \setminus D_{C_1}$ is an open annulus, and open sets have always positive area as they contain a round disk. Let $a = \inf \operatorname{area}(D_C)$ for circles C in D. We claim that a is not just an infimum but the infimum is realized by the area of some disk $D_{C'}$ for some circle C' in D. Suppose $C_1 > C_2 > \ldots$ is a descending sequence such that $a = \inf \operatorname{area}(D_{C_n})$. Since $C_1 > C_2 > \ldots$ also $D_{C_1} \supset D_{C_2} > \ldots$ and as the closures $\overline{D_{C_1}} \supset \overline{D_{C_2}} > \ldots$ are a descending sequence of compact sets the intersection

$$A = \bigcap_{n \in \mathbb{N}} \overline{D_{C_n}}$$

is non-empty. As it is non-empty there must be a point $x \in A$. This point x must lie in a circle C' which also bounds a disk $D_{C'}$. But as $x \in \overline{D_{C_n}}$ for all n and $\overline{D_{C_n}} \subset D_{C_{n-1}}$ we have $D_{C'} \subset D_{C_n}$ for all n. In particular, $\operatorname{area}(D_{C'}) \leq \operatorname{area}(D_{C_n})$ for all n implies by the definition of the sequence C_n infimizing the areas of D_{C_n} that $a = \operatorname{area}(D_{C'})$.

Note that a > 0 as open disks must have a positive area. On the other hand, if a > 0 then choose a point in $D_{C'}$. Then there is a circle going through this point that again bounds a disk of area strictly less than a which contradicts the definition of a. We get a contradiction, so S^2 cannot be decomposed into a disjoint union of circles (we actually also proved that \mathbb{R}^2 cannot be written as the disjoint union of circles).

4. Visualization of the Hopf fibration for S^3

Identify \mathbb{C}^2 with the quaternions Q by identifying $(z, w) = (a + bi, c + di) \in \mathbb{C}^2$ with $z + wj = a + bi + cj + dk \in Q$.

- (a) Indentify $S^3 \setminus \{-1\}$ with \mathbb{R}^3 via stereographic projection from the point $-1 \in Q$. Locate in the target \mathbb{R}^3 the images of the points $1, \pm i, \pm j, \pm k$ and the 6 "coordinate" great circles of S^3 .
- (b) For $0 \le r \le \pi/2$, define

$$T_r := \{(z, w) : |z| = \cos(r), |w| = \sin(r)\}.$$

- (i) Observe that $(T_r)_{0 < r < \pi/2}$ is a partition of S^3 .
- (ii) Observe that T_0 and $T_{\pi/2}$ are great circles of S^3 and are Hopf fibers in the sense of exercise 3.
- (iii) Observe that for $0 < r < \pi/2$ the T_r are all tori, that they are equidistant from each other (in the path metric on S^3) and that each T_r is a union of Hopf fibers. The middle torus $T_{\pi/4} = \{(z, w) \mid |z| = |w| = 1/\sqrt{2}\}$ is called the *Clifford torus*.
- (c) Visualize the Hopf fibration of S^3 by drawing all of the Hopf fibers in \mathbb{R}^3 (after stereographic projection). The tori T_r are useful guides.
- (d) Remarkably, the quotient space S^3/\sim is S^2 , where \sim is the equivalence relation where each Hopf fiber becomes a point. Can you "see" the S^2 that is swept out as the fiber S^1 varies in S^3 ? Can you find the upper and lower hemispheres of the S^2 in your diagram?

Solution:

(a) Stereographic projection with respect to $-1 = (-1, 0, 0, 0) \in \mathbb{R}^4$ is $\psi : S^3 \setminus \{-1\} \to \mathbb{R}^3$ given by

$$a + bi + cj + dk \xrightarrow{\psi} \frac{bi + cj + dk}{1 + a}.$$

where we identify $\mathbb{R}^3 \cong \{0\} \times \mathbb{R}^3 \subset \mathbb{R}^4 \cong Q$ with the strictly imaginary part of the quaternions. So

$$\psi(1) = 0, \qquad \psi(\pm i) = \pm i, \qquad \psi(\pm j) = \pm j, \qquad \psi(\pm k) = \pm k.$$

There are $\binom{4}{2} = 6$ coordinate great circles as we take the unit circle in the plane where two coordinates are 0. For $u \neq v \in \{1, i, j, k\}$ two basis vectors the corresponding great circle $\gamma_{u,v} : \mathbb{R} \to S^3$ is

$$t \mapsto u \cos t + v \sin t$$
.

We get for $v \neq 1$ that $\psi(\gamma_{1,v}(t)) = v \frac{\sin t}{1+\cos t}$ and for $u, v \neq 1$ we get $\psi(\gamma_{u,v}(t)) = \gamma_{u,v}(t)$. Hence stereographic projection sends the circle $\gamma_{1,v}$ (minus the point -1) for $v \neq 1$ to the line spanned by the basis vector v and for $u, v \neq 1$ the map ψ sends the circle $\gamma_{u,v}$ to itself.

(b) (i) We need to show that $\bigcup_{0 \le r \le \pi/2} T_r = S^3$ as a disjoint union. First note that $T_r \subset S^3$ as $|z|^2 = |w|^2 = \cos^2 r + \sin^2 r = 1$. Let now $(z, w) \in S^3$ arbitrary. As $0 \le |z| \le 1$ there is a unique $r \in [0, \pi/2]$ such that $\cos r = |z|$. Moreover, automatically

$$|w| = \sqrt{1 - |z|^2} = \sqrt{1 - \cos^2 r} = \sin r$$

since $r \in [0, \pi/2]$. Hence $(z, w) \in T_r$. Finally, the T_r are pairwise disjoint for pairwise different r.

(ii) The set $T_0 = \{(z, w) | |z| = 1, |w| = 0\}$ is the great circle parametrized by $\gamma_{1,i}$ discussed in part (a). The set $T_{\pi/2} = \{(z, w) | |z| = 0, |w| = 1\}$ is the great circle parametrized by $\gamma_{j,k}$. Note that

$$\gamma_{1,i}(t) = \cos t + i \sin t = 1 \cdot e^{it}, \qquad \gamma_{j,k}(t) = j \cos t + k \sin t = j \cdot e^{it}$$

are both Hopf fibers in the sense of exercise 3.

(iii) For $0 < r < \pi/2$ we have a homeomorphism $T_r \to S^1 \times S^1$ sending

$$(z,w)\mapsto \left(rac{z}{|z|},rac{w}{|w|}
ight)$$

where $S^1 \subset \mathbb{C}$ is the standard unit circle. Hence T_r is a torus. An arbitrary point $p \in T_r$ has form

$$\cos re^{it} + \sin re^{is}j$$

for some $(s,t) \in \mathbb{R}$. The Hopf fiber through this point is

$$a \mapsto e^{ia}p = \cos r e^{it+a} + \sin r e^{is+a}j$$

which lies again entirely in T_r . They are called *Villarceau circles*. Hence each T_r is the union of Hopf fibers.

For fixed (s,t) the path $\eta_{s,t} : [0, \pi/2] \to S^3$ given by $r \mapsto \cos r e^{it} + \sin r e^{is} j$ is of unit speed and the derivative $\eta'_{s,t}(r)(\eta_{s,t}(r))$ is orthogonal to the torus T_r at $\eta(s,t)(r)$. Using such a path we can get from T_{r_0} to T_{r_1} in time $|r_1 - r_0|$ (independent of which curve $\eta_{s,t}$ we use). As the paths were passing at the same time orthogonally through all other T_r the distance in S^3 from T_{r_0} to T_{r_1} is $|r_1 - r_0|$.

(c) We can parametrize T_r as

 $(s,t) \mapsto \cos r e^{it} + \sin r e^{is} j = \cos r \cos t + i \cos r \sin t + j \sin r \cos s + k \sin r \sin s$

which under stereographic projection is

$$(s,t) \mapsto \frac{i\cos r\sin t + j\sin r\cos s + k\sin r\sin s}{1 + \cos r\cos t}.$$

Differential Geometry I	Tom Ilmanen
D-MATH	Fall 2023

We claim that the T_r parametrize a family of standard tori in \mathbb{R}^3 which are rotation symmetric with respect to the *i*-axis. A torus has standard parametrization:

 $(\theta, s) \mapsto i\tilde{r}\sin\theta + j(R + \tilde{r}\cos\theta)\cos s + k(R + \tilde{r}\cos\theta)\sin s$

where \tilde{r} denotes the radius of the circle in the *ij*-plane with center at $iR \in \mathbb{R}^3$. Then the torus is the surface of revolution of this circle when rotation around the *i*-axis. We claim that the following works:

$$\tilde{r} = \frac{\cos r}{\sin r},$$

$$R = \frac{1}{\sin r},$$

$$\sin \theta = \frac{\sin t \sin r}{1 + \cos r \cos t},$$

$$\cos \theta = \frac{-\cos r - \cos t}{1 + \cos r \cos t}$$

Note that $\sin^2 \theta + \cos^2 \theta = 1$ for the given formulas.

(d) A nice illustration of preimages of the Hopf fibration

$$S^3 \setminus \{-1\} \to \mathbb{R}^3 \to S^2$$

is given in the following video
https://www.youtube.com/watch?v=AKotMPGFJYk

We can define a map

 $S^3 \rightarrow S^2$

that sends $T_r \subset S^3$ to the latitude circles in S^2 at with angular height coordinate r, i.e. the circle T_0 gets mapped to the north pole in S^2 and $T_{\pi/2}$ gets mapped to the south pole in S^2 . This defines a smooth fiber bundle with fiber S^1 .