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1. The Veronese embedding

(a) Consider the map F : R3 → R4 given by F (x, y, z) := (x2 −y2, xy, xz, yz).
Prove that F induces a well-defined map f : RP2 → R4 characterized by
f([p]) := F (p) for any p ∈ S2.

(b) Prove that f is injective.

(c) Prove that f is an immersion.

(d) Prove that f is a homeomorphism onto its image. (The map f is called
the Veronese embedding of RP2 in R4. Note that RP2 does not embed in
R3.)

Solution:

(a) F is given by homogeneous polynomials of even degree. That is F (λx) =
λ2F (x) for any λ ∈ R \ {0}. More concretely, for p ∈ S2 we see that
F (−p) = (−1)2F (−p) = F (−p) as the minus cancels everywhere. Hence
f([p]) = f([−p]) so f is well-defined.

(b) Suppose f([p]) = f([q]) for p = (x, y, z), q = (u, v, w) with |p| = |q| = 1.
We want to show that p = λq for some λ ∈ {±1}. By assumption, we
have the following equations

x2 − y2 = u2 − v2,

xy = uv,

xz = uw,

yz = vw.

If x = 0 then either u or v is 0 by the second equation. Suppose u = 0.
Then by the first equation y = ±v. If now y = ±v ̸= 0 it follows by
the last equation that z = ±w and hence indeed p = q or p = −q. If
y = v = x = w = 0 then as p, q are on the sphere, they are either (0, 0, 1)
or (0, 0,−1) and hence also equal or antipodal.
The same argument works when x = 0 and v = 0. If y = 0, we again get
either that u or v is 0.
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So assume x ̸= 0 and y ̸= 0. Then

z2 = uw

x

vw

y
= uvw2

xy
= w2

So z = ±w. If z = ±w are non-zero, we get y = ±v and then also x = ±u
by the middle two equations, so p = ±q. If z = w = 0 then as p, q lie
on the sphere x2 + y2 = 1 = u2 + v2, so adding this to the first equation
we get 2x2 = 2u2, so again x = ±u. Then also y = ±v and consequently
p = ±q.

(c) To prove that f is smooth we need to prove that f ◦ ψ−1
j : R2 → R4 is

smooth where ψj : Uj → R2 are the chart from exercise sheet 5 exercise 2
for j = 0, 1, 2. The maps are

(u, v)
ψ−1

j7→


[1, u, v] f7→ (1 − v2, u, v, uv)/r2, j = 0,
[u, 1, v] 7→ (u2 − 1, u, uv, v)/r2, j = 1,
[u, v, 1] 7→ (u2 − v2, uv, u, v)/r2, j = 2.

which are all smooth. Here r2 = 12 + u2 + v2.
The derivatives of f ◦ψ−1

j at (u, v) = ψj([p]) are the linear maps R2 → R4

represented by the matrix

D(f ◦ ψ−1
1 )(u, v) = 1

r4


−2u(1 − v2) −2vr2 − 2v(1 − v2)
r2 − 2u2 −2uv

−2uv r2 − 2v2

vr2 − 2u2v ur2 − 2uv2

 ,

D(f ◦ ψ−1
2 )(u, v) = 1

r4


2ur2 − 2u(u2 − 1) −2v(u2 − 1)

r2 − 2u2 −2uv
vr2 − 2u2v ur2 − 2uv2

−2uv r2 − 2v2

 ,

D(f ◦ ψ−1
3 )(u, v) = 1

r4


2ur2 − 2u(u2 − v2) −2vr2 − 2v(u2 − v2)

vr2 − 2u2v ur2 − 2uv2

r2 − 2u2 −2uv
−2uv r2 − 2v2

 .

The three maps are injective for all pairs (u, v) ∈ R2, hence also D[p]f :
T[p]M → R4 is injective for every [p] ∈ RP2. This proves that f is an
immersion.

(d) Note that RPn is compact for every n as the image of a compact set under
the continuous map Sn → RPn. From topology we know that a contin-
uous injective map from a compact Hausdorff domain is automatically a
homeomorphism onto its image.
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2. TS3 has a global trivialization

A Lie group is a smooth manifold endowed with a group structure such that the
group operations (g, h) 7→ gh and g 7→ g−1 are smooth.

(a) Show that S3 := {V ∈ Q : |V | = 1} (where Q are the quaternions) is a
Lie group.

(b) Construct smooth vector fields X, Y , Z on S3 such that X(u), Y (u), Z(u)
are independent for each u in S3. Conclude that TS3 ∼= S3 × R3.

Solution:

(a) Let g ∈ U1, h ∈ U2 and gh ∈ U3, where ψjr : Ujr → Bn are hemisphere
charts as described in exercise 1 sheet 5 for j1, j2, j3 ∈ {0, 1, 2, 3}. Denote
by m : S3×S3 → S3 the multiplication in S3. Then ψj3 ◦m◦(ψj1 ×ψj2)−1 :
Bn × Bn → Bn is given by the composition of smooth functions as the
product of quaternions Q×Q → Q is smooth. Same for the inverse.

(b) Let u ∈ S3 ⊂ Q ∼= R4. Then iu, ju, ku ∈ Q ∼= R4 span TuS
3. Let us

prove that iu is in the tangent space of S3 at u. Identify Q ∼= C × C by
u = z + jw as in exercise 4. Then iu = iz + ijw is orthogonal to u as

⟨u, iu⟩R4 = ⟨z, iz⟩R2 + ⟨w, iw⟩R2 = 0

as multiplication by i rotates a complex number by π/2 and so z is per-
pendicular to iz and w is perpendicular iw. Similarly show that

u, iu, ju, ku

are an orthonormal basis of R4.
Hence the vector fields X,Y, Z defined by X(u) = iu, Y (u) = ju, Z(u) =
ku are pointwise independent vector fields.
Whenever we find X1, . . . , Xn pointwise linearly independent vector fields
on a n-dimensional manifold M the map M × Rn → TM given by

(p; a1, . . . , an) 7→

(
p,

n∑
r=1

arXr(p))
)

is an diffeomorphism.
As we found 3 vector fields on S3 that are pointwise linearly independent,
we have S3 × R3 ∼= TS3.

3



Differential Geometry I
D-MATH

Tom Ilmanen
Fall 2023

3. The Hopf fibration

(a) Prove that every sphere of odd dimension carries a nowhere vanishing
vector field.

(b) Prove that S2n−1 has a "smooth" decomposition into circles. They are
called Hopf fibers of S2n−1.

(c*) Can S2 be decomposed into a disjoint union of submanifolds diffeomorphic
to S1?

Solution:

(a) Look at S2n−1 ⊂ R2n ∼= Cn. Then define X(p) = ip. That is if p =
(z1, . . . , zn) ∈ Cn then X(p) = ip = (iz1, . . . , izn). The vector X(p) is
orthogonal to p:

⟨p,X(p)⟩R2n = ⟨p, ip⟩R2n =
n∑
j=1

⟨zj , izj⟩R2 = 0

as multiplication by i rotates a complex number by π/2 and so izj is
perpendicular to the original complex number zj . The orthogonality of p
and X(p) proves that X(p) is a tangent vector at p. Since |X(p)| = |ip| =
|p| = 1 for any p the vector field X defines a nowhere vanishing vector
field on S2n−1.

(b) For any p ∈ S2n−1 look at the great circle γp : R → S2n−1 given by
t 7→ eitp. It parametrizes a circle as γ(t + 2π) = γ(t). Its tangent vector
is γ′

p(t) = ieitp = iγp(t) = X(γp(t)). So γ follows the vector field X.
This is the reason that two different such circles have either the same or a
disjoint image. Indeed, suppose q ∈ γp(t), i.e. q = eit0p for some t0 ∈ R.
Then γq(t) = eitq = ei(t+t0)p, so in particular the image of γp and γq
agree. Conversely, if q ̸= eitp for any t ∈ R then also qeis ̸= eitp for any
t ∈ R, s ∈ R. So the circles are disjoint. (You could also prove that being
on the same circle is an equivalence relation and then use that equivalence
classes form a partition of a set.)

(c) No. We need the smooth version of the Jordan-Schoenflies Theorem:

Theorem. (Smooth Jordan-Schoenflies Theorem)

(i) Deleting an embedded circle in S2 divides S2 into two parts that are
diffeomorphic to open disks.
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(ii) Deleting an embedded circle in an open disk D divides D into two
parts, one diffeomorphic to an open disk and one diffeomorphic to an
open annulus.

Suppose S2 can be decomposed into a disjoint union of submanifolds dif-
feomorphic to S1. Choose one circle C0. By the smooth Jordan-Schoenflies
Theorem S2 \C0 is diffeomorphic to two disks. Choose one of these disks
and call it D. Every circle must entirely lie in D or in S2 \ D as the cir-
cles are assumed to be disjoint. Again by the smooth Jordan-Schoenflies
Theorem any circle C in D divides D into two components DC and AC ,
where DC is diffeomorphic to an open disk and and AC diffeomorphic to
an open annulus. So for any other circle C̃ either C̃ ⊂ AC or C̃ ⊂ DC .
We can define a partial order on the set of circles that are contained in D.
Define

C1 < C2 iff C1 ⊂ DC2 .

Note that if C1 < C2 then also DC1 ⊂ DC2 and area(DC1) < area(DC2)
as DC2 \DC1 is an open annulus, and open sets have always positive area
as they contain a round disk. Let a = inf area(DC) for circles C in D.
We claim that a is not just an infimum but the infimum is realized by the
area of some disk DC′ for some circle C ′ in D. Suppose C1 > C2 > . . . is
a descending sequence such that a = inf area(DCn

). Since C1 > C2 > . . .
also DC1 ⊃ DC2 > . . . and as the closures DC1 ⊃ DC2 > . . . are a
descending sequence of compact sets the intersection

A =
⋂
n∈N

DCn

is non-empty. As it is non-empty there must be a point x ∈ A. This point
x must lie in a circle C ′ which also bounds a disk DC′ . But as x ∈ DCn

for all n and DCn
⊂ DCn−1 we have DC′ ⊂ DCn

for all n. In particular,
area(DC′) ≤ area(DCn

) for all n implies by the definition of the sequence
Cn infimizing the areas of DCn that a = area(DC′).
Note that a > 0 as open disks must have a positive area. On the other
hand, if a > 0 then choose a point in DC′ . Then there is a circle going
through this point that again bounds a disk of area strictly less than a
which contradicts the definition of a. We get a contradiction, so S2 cannot
be decomposed into a disjoint union of circles (we actually also proved that
R2 cannot be written as the disjoint union of circles).

4. Visualization of the Hopf fibration for S3

Identify C2 with the quaternions Q by identifying (z, w) = (a+ bi, c+ di) ∈ C2

with z + wj = a+ bi+ cj + dk ∈ Q.
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(a) Indentify S3 \ {−1} with R3 via stereographic projection from the point
−1 ∈ Q. Locate in the target R3 the images of the points 1,±i,±j,±k
and the 6 "coordinate" great circles of S3.

(b) For 0 ≤ r ≤ π/2, define

Tr := {(z, w) : |z| = cos(r), |w| = sin(r)}.

(i) Observe that (Tr)0≤r≤π/2 is a partition of S3.
(ii) Observe that T0 and Tπ/2 are great circles of S3 and are Hopf fibers

in the sense of exercise 3.
(iii) Observe that for 0 < r < π/2 the Tr are all tori, that they are

equidistant from each other (in the path metric on S3) and that each
Tr is a union of Hopf fibers. The middle torus Tπ/4 = {(z, w) | |z| =
|w| = 1/

√
2)} is called the Clifford torus.

(c) Visualize the Hopf fibration of S3 by drawing all of the Hopf fibers in R3

(after stereographic projection). The tori Tr are useful guides.

(d) Remarkably, the quotient space S3/ ∼ is S2, where ∼ is the equivalence
relation where each Hopf fiber becomes a point. Can you "see" the S2

that is swept out as the fiber S1 varies in S3? Can you find the upper and
lower hemispheres of the S2 in your diagram?

Solution:

(a) Stereographic projection with respect to −1 = (−1, 0, 0, 0) ∈ R4 is ψ :
S3 \ {−1} → R3 given by

a+ bi+ cj + dk
ψ7→ bi+ cj + dk

1 + a
.

where we identify R3 ∼= {0} × R3 ⊂ R4 ∼= Q with the strictly imaginary
part of the quaternions. So

ψ(1) = 0, ψ(±i) = ±i, , ψ(±j) = ±j, , ψ(±k) = ±k.

There are
(4

2
)

= 6 coordinate great circles as we take the unit circle in
the plane where two coordinates are 0. For u ̸= v ∈ {1, i, j, k} two basis
vectors the corresponding great circle γu,v : R → S3 is

t 7→ u cos t+ v sin t.

We get for v ̸= 1 that ψ(γ1,v(t)) = v sin t
1+cos t and for u, v ̸= 1 we get

ψ(γu,v(t)) = γu,v(t). Hence stereographic projection sends the circle γ1,v
(minus the point −1) for v ̸= 1 to the line spanned by the basis vector v
and for u, v ̸= 1 the map ψ sends the circle γu,v to itself.
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(b) (i) We need to show that
⋃

0≤r≤π/2 Tr = S3 as a disjoint union. First
note that Tr ⊂ S3 as |z|2 = |w|2 = cos2 r + sin2 r = 1. Let now
(z, w) ∈ S3 arbitrary. As 0 ≤ |z| ≤ 1 there is a unique r ∈ [0, π/2]
such that cos r = |z|. Moreover, automatically

|w| =
√

1 − |z|2 =
√

1 − cos2 r = sin r

since r ∈ [0, π/2]. Hence (z, w) ∈ Tr. Finally, the Tr are pairwise
disjoint for pairwise different r.

(ii) The set T0 = {(z, w) | |z| = 1, |w| = 0} is the great circle parametrized
by γ1,i discussed in part (a). The set Tπ/2 = {(z, w) | |z| = 0, |w| = 1}
is the great circle parametrized by γj,k. Note that

γ1,i(t) = cos t+ i sin t = 1 · eit, γj,k(t) = j cos t+ k sin t = j · eit

are both Hopf fibers in the sense of exercise 3.
(iii) For 0 < r < π/2 we have a homeomorphism Tr → S1 × S1 sending

(z, w) 7→
(
z

|z|
,
w

|w|

)
where S1 ⊂ C is the standard unit circle. Hence Tr is a torus.
An arbitrary point p ∈ Tr has form

cos reit + sin reisj

for some (s, t) ∈ R. The Hopf fiber through this point is

a 7→ eiap = cos reit+a + sin reis+aj

which lies again entirely in Tr. They are called Villarceau circles.
Hence each Tr is the union of Hopf fibers.
For fixed (s, t) the path ηs,t : [0, π/2] → S3 given by r 7→ cos reit +
sin reisj is of unit speed and the derivative η′

s,t(r)(ηs,t(r)) is orthog-
onal to the torus Tr at η(s, t)(r). Using such a path we can get from
Tr0 to Tr1 in time |r1 − r0| (independent of which curve ηs,t we use).
As the paths were passing at the same time orthogonally through all
other Tr the distance in S3 from Tr0 to Tr1 is |r1 − r0|.

(c) We can parametrize Tr as

(s, t) 7→ cos reit+sin reisj = cos r cos t+i cos r sin t+j sin r cos s+k sin r sin s

which under stereographic projection is

(s, t) 7→ i cos r sin t+ j sin r cos s+ k sin r sin s
1 + cos r cos t .
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We claim that the Tr parametrize a family of standard tori in R3 which
are rotation symmetric with respect to the i-axis. A torus has standard
parametrization:

(θ, s) 7→ ir̃ sin θ + j(R+ r̃ cos θ) cos s+ k(R+ r̃ cos θ) sin s

where r̃ denotes the radius of the circle in the ij-plane with center at
iR ∈ R3. Then the torus is the surface of revolution of this circle when
rotation around the i-axis. We claim that the following works:

r̃ = cos r
sin r ,

R = 1
sin r ,

sin θ = sin t sin r
1 + cos r cos t ,

cos θ = − cos r − cos t
1 + cos r cos t .

Note that sin2 θ + cos2 θ = 1 for the given formulas.

(d) A nice illustration of preimages of the Hopf fibration

S3 \ {−1} → R3 → S2

is given in the following video
https://www.youtube.com/watch?v=AKotMPGFJYk

We can define a map
S3 → S2

that sends Tr ⊂ S3 to the latitude circles in S2 at with angular height
coordinate r, i.e. the circle T0 gets mapped to the north pole in S2 and
Tπ/2 gets mapped to the south pole in S2. This defines a smooth fiber
bundle with fiber S1.
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